Summary: | Biomass is a fundamental measure for understanding the structure and functioning (e.g. fluxes of energy and nutrients in the food chain) of aquatic ecosystems. We aim to provide predictive models to estimate the biomass of Triplectides egleri Sattler, 1963, in a stream in Central Amazonia, based on body and case dimensions. We used body length, head-capsule width, interocular distance and case length and width to derive biomass estimations. Linear, exponential and power regression models were used to assess the relationship between biomass and body or case dimensions. All regression models used in the biomass estimation of T. egleri were significant. The best fit between biomass and body or case dimensions was obtained using the power model, followed by the exponential and linear models. Body length provided the best estimate of biomass. However, the dimensions of sclerotized structures (interocular distance and head-capsule width) also provided good biomass predictions, and may be useful in estimating biomass of preserved and/or damaged material. Case width was the dimension of the case that provided the best estimate of biomass. Despite the low relation, case width may be useful in studies that require low stress on individuals. Keywords: Allometric relationship, Aquatic insects, Body dimensions, Case dimensions, Shredder caddisfly
|