Row stochastic inverse eigenvalue problem

<p>Abstract</p> <p>In this paper, we give sufficient conditions or realizability criteria for the existence of a row stochastic matrix with a given spectrum &#923; = {<it>&#955;</it><sub>1</sub>, ..., <it>&#955;<sub>n</sub></...

Full description

Bibliographic Details
Main Authors: Chang-qing Xu, Shang-jun Yang
Format: Article
Language:English
Published: SpringerOpen 2011-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/2011/1/24
Description
Summary:<p>Abstract</p> <p>In this paper, we give sufficient conditions or realizability criteria for the existence of a row stochastic matrix with a given spectrum &#923; = {<it>&#955;</it><sub>1</sub>, ..., <it>&#955;<sub>n</sub></it>} = &#923;<sub>1 </sub>&#8746; &#8943; &#8746; &#923;<it><sub>m </sub></it>&#8746; &#923;<sub><it>m</it>+1</sub>, <it>m &gt; </it>0; where <inline-formula><graphic file="1029-242X-2011-24-i1.gif"/></inline-formula> (<it>p<sub>k </sub></it>is an integer greater than 1), <it>&#955;</it><sub><it>k</it>1 </sub>= <it>&#955;<sub>k </sub>&gt; </it>0, 1 = <it>&#955;</it><sub>1 </sub>&#8805; <it>&#969;<sub>k </sub>&gt; </it>0, <it>k </it>= 1, ..., <it>m</it>; &#923;<sub><it>m</it>+1 </sub>= {<it>&#955;<sub>m</sub></it>+1}, <it>&#969;</it><sub><it>m</it>+1 </sub>&#8801; <it>&#955;</it><sub>1 </sub>+ ..., +<it>&#955;<sub>n </sub></it>&#8804; <it>&#955;</it><sub>1</sub>, <it>&#969;<sub>k </sub></it>&#8805; <it>&#955;<sub>k</sub></it>, <it>&#969;</it><sub>1 </sub>&#8805; <it>&#955;<sub>k</sub></it>, <it>k </it>= 2, ..., <it>m </it>+ 1. In the case when <it>p</it><sub>1</sub>, ..., <it>p<sub>m </sub></it>are all equal to 2, &#923; becomes a list of 2<it>m </it>+ 1 real numbers for any positive integer <it>m</it>, and our result gives sufficient conditions for a list of 2<it>m </it>+ 1 real numbers to be realizable by a row stochastic matrix.</p> <p><b>AMS classification: </b>15A18.</p>
ISSN:1025-5834
1029-242X