Heisenberg Parabolic Subgroups of Exceptional Non-Compact <i>G</i><sub>2(2)</sub> and Invariant Differential Operators

In the present paper we continue the project of systematic construction of invariant differential operators on the example of the non-compact algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi&...

Full description

Bibliographic Details
Main Author: V.K. Dobrev
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/4/660
_version_ 1797409245190160384
author V.K. Dobrev
author_facet V.K. Dobrev
author_sort V.K. Dobrev
collection DOAJ
description In the present paper we continue the project of systematic construction of invariant differential operators on the example of the non-compact algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>G</mi><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msub></semantics></math></inline-formula>. We use both the minimal and the maximal Heisenberg parabolic subalgebras. We give the main multiplets of indecomposable elementary representations. This includes the explicit parametrization of the intertwining differential operators between the ERs. These are new results applicable in all cases when one would like to use <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>G</mi><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msub></semantics></math></inline-formula> invariant differential operators.
first_indexed 2024-03-09T04:11:31Z
format Article
id doaj.art-486721f062314f54ad765936a6258c2a
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T04:11:31Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-486721f062314f54ad765936a6258c2a2023-12-03T13:59:53ZengMDPI AGSymmetry2073-89942022-03-0114466010.3390/sym14040660Heisenberg Parabolic Subgroups of Exceptional Non-Compact <i>G</i><sub>2(2)</sub> and Invariant Differential OperatorsV.K. Dobrev0Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, BulgariaIn the present paper we continue the project of systematic construction of invariant differential operators on the example of the non-compact algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>G</mi><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msub></semantics></math></inline-formula>. We use both the minimal and the maximal Heisenberg parabolic subalgebras. We give the main multiplets of indecomposable elementary representations. This includes the explicit parametrization of the intertwining differential operators between the ERs. These are new results applicable in all cases when one would like to use <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>G</mi><mrow><mn>2</mn><mo>(</mo><mn>2</mn><mo>)</mo></mrow></msub></semantics></math></inline-formula> invariant differential operators.https://www.mdpi.com/2073-8994/14/4/660invariant differential operatorsHeisenberg parabolic subgroupsexceptional non-compact groups
spellingShingle V.K. Dobrev
Heisenberg Parabolic Subgroups of Exceptional Non-Compact <i>G</i><sub>2(2)</sub> and Invariant Differential Operators
Symmetry
invariant differential operators
Heisenberg parabolic subgroups
exceptional non-compact groups
title Heisenberg Parabolic Subgroups of Exceptional Non-Compact <i>G</i><sub>2(2)</sub> and Invariant Differential Operators
title_full Heisenberg Parabolic Subgroups of Exceptional Non-Compact <i>G</i><sub>2(2)</sub> and Invariant Differential Operators
title_fullStr Heisenberg Parabolic Subgroups of Exceptional Non-Compact <i>G</i><sub>2(2)</sub> and Invariant Differential Operators
title_full_unstemmed Heisenberg Parabolic Subgroups of Exceptional Non-Compact <i>G</i><sub>2(2)</sub> and Invariant Differential Operators
title_short Heisenberg Parabolic Subgroups of Exceptional Non-Compact <i>G</i><sub>2(2)</sub> and Invariant Differential Operators
title_sort heisenberg parabolic subgroups of exceptional non compact i g i sub 2 2 sub and invariant differential operators
topic invariant differential operators
Heisenberg parabolic subgroups
exceptional non-compact groups
url https://www.mdpi.com/2073-8994/14/4/660
work_keys_str_mv AT vkdobrev heisenbergparabolicsubgroupsofexceptionalnoncompactigisub22subandinvariantdifferentialoperators