Computational Failure Analysis under Overloading
The aim of this research work is to shed more light on performance-based design through a computational framework that assesses the residual strength of damaged plate-type configurations under overloading. Novel expressions are generated to analyze the power of crack-like stress raisers coupled with...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/11/10/1509 |
Summary: | The aim of this research work is to shed more light on performance-based design through a computational framework that assesses the residual strength of damaged plate-type configurations under overloading. Novel expressions are generated to analyze the power of crack-like stress raisers coupled with retardation effects. Analytical outcomes show that careful consideration of the overload location and crack size can be quite effective in improving safety design and failure mode estimation. |
---|---|
ISSN: | 2075-4701 |