Thermometric properties of Na2Y2TeB2O10:Tb3+ green phosphor based on fluorescence/excitation intensity ratio
For noncontact optical thermometry, in contrast with fluorescence intensity ratio (FIR) technology, excitation intensity ratio (EIR) technology has been seriously limited due to low sensitivity. Moreover, by exploring all possible temperature-dependent response, developing multimode optical thermome...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Tsinghua University Press
2023-04-01
|
Series: | Journal of Advanced Ceramics |
Subjects: | |
Online Access: | https://www.sciopen.com/article/10.26599/JAC.2023.9220725 |
Summary: | For noncontact optical thermometry, in contrast with fluorescence intensity ratio (FIR) technology, excitation intensity ratio (EIR) technology has been seriously limited due to low sensitivity. Moreover, by exploring all possible temperature-dependent response, developing multimode optical thermometry is of great importance. In this work, a new Na2Y2TeB2O10 (NYTB):Tb3+ phosphor is obtained by a solid-state reaction. Based on FIR and EIR models of Tb3+, thermometric properties are studied thoroughly. Excellent relative and absolute sensitivity (SR and SA) are acquired due to the significant difference in emission/excitation lines in response to temperature. Meanwhile, Tb3+ content-dependent luminescence quenching mechanism is discussed. This study shows a feasible route for exploiting well-performing FIR-/EIR-based thermometric materials. |
---|---|
ISSN: | 2226-4108 2227-8508 |