Self-healing in cementitious composite containing bacteria and protective polymers at various temperatures

Autonomous sealing of cracks in concrete through bacteria-induced calcification has become a topic of great concern in the last two decades. This paper is focused on two main issues of the so-called bio-based self-healing concrete, i.e. protection of the bacterial spores embedded in the cementitious...

Full description

Bibliographic Details
Main Authors: Schreiberova Hana, Trtik Tomas, Chylik Roman, Prosek Zdenek, Seps Karel, Fladr Josef, Bily Petr, Kohoutkova Alena
Format: Article
Language:English
Published: Peter the Great St. Petersburg Polytechnic University 2021-11-01
Series:Magazine of Civil Engineering
Subjects:
Online Access:http://engstroy.spbstu.ru/article/2021.107.13/
_version_ 1818976839362674688
author Schreiberova Hana
Trtik Tomas
Chylik Roman
Prosek Zdenek
Seps Karel
Fladr Josef
Bily Petr
Kohoutkova Alena
author_facet Schreiberova Hana
Trtik Tomas
Chylik Roman
Prosek Zdenek
Seps Karel
Fladr Josef
Bily Petr
Kohoutkova Alena
author_sort Schreiberova Hana
collection DOAJ
description Autonomous sealing of cracks in concrete through bacteria-induced calcification has become a topic of great concern in the last two decades. This paper is focused on two main issues of the so-called bio-based self-healing concrete, i.e. protection of the bacterial spores embedded in the cementitious matrix and behavior of the material at low temperatures. The second aspect is particularly important as the impact of the conditions corresponding to real outside environment was rarely investigated before. An investigation of the influence of temperatures below the freezing point is a unique extension of the current state of the art. In the current study, as a form of protection, superabsorbent polymers (SAP) powder and 16 % polyvinyl alcohol (PVA) water solution are applied. The performed mechanical tests showed pronounced negative impact of the PVA addition on both tensile and compressive strength (a decrease of 56 % and 79 %, respectively), while the SAP negatively affected only the compressive strength (a drop of 30 %). In our study, the composite containing SAP reached even slightly higher tensile strength compared to the control (around 7 % increase). The healing action was observed on cracked cementitious composites beams at ideal (i.e. room) temperature, low temperature (10 °C), and after exposure to freeze cycles (–5 to 0 °C). After 28-day immersion in water at the ideal temperature, the series containing SAP and bacterial spores (BAC_SAP) showed the most pronounced healing – the value of the average maximum healed crack width (Δwmax) reached 219 μm. In the case of preliminary freeze cycling, the BAC_SAP also reached the highest values. At low temperatures, the positive impact of SAP seems to be inhibited as Δwmax is the highest in the control series. In all of the applied conditions, insufficient crack-sealing was detectable in the samples containing PVA. Thus, the SAP proved to be applicable for the protection of bacterial spores at ideal temperatures; however, more research concerning its mechanism in cementitious composite at lower temperatures is needed.
first_indexed 2024-12-20T16:18:13Z
format Article
id doaj.art-487553abd4c44eb1b53795a817ad6953
institution Directory Open Access Journal
issn 2712-8172
language English
last_indexed 2024-12-20T16:18:13Z
publishDate 2021-11-01
publisher Peter the Great St. Petersburg Polytechnic University
record_format Article
series Magazine of Civil Engineering
spelling doaj.art-487553abd4c44eb1b53795a817ad69532022-12-21T19:33:42ZengPeter the Great St. Petersburg Polytechnic UniversityMagazine of Civil Engineering2712-81722021-11-011070710.34910/MCE.107.1320714726Self-healing in cementitious composite containing bacteria and protective polymers at various temperaturesSchreiberova Hana0https://orcid.org/0000-0003-3840-0715Trtik Tomas1https://orcid.org/0000-0001-9466-0867Chylik Roman2https://orcid.org/0000-0001-5497-0705Prosek Zdenek3https://orcid.org/0000-0002-1036-0398Seps Karel4https://orcid.org/0000-0001-8845-1612Fladr Josef5https://orcid.org/0000-0001-8281-3053Bily Petr6https://orcid.org/0000-0003-3750-5005Kohoutkova Alena7https://orcid.org/0000-0002-7093-1113Czech Technical UniversityCzech Technical UniversityCzech Technical UniversityCzech Technical UniversityCzech Technical UniversityCzech Technical UniversityCzech Technical UniversityCzech Technical UniversityAutonomous sealing of cracks in concrete through bacteria-induced calcification has become a topic of great concern in the last two decades. This paper is focused on two main issues of the so-called bio-based self-healing concrete, i.e. protection of the bacterial spores embedded in the cementitious matrix and behavior of the material at low temperatures. The second aspect is particularly important as the impact of the conditions corresponding to real outside environment was rarely investigated before. An investigation of the influence of temperatures below the freezing point is a unique extension of the current state of the art. In the current study, as a form of protection, superabsorbent polymers (SAP) powder and 16 % polyvinyl alcohol (PVA) water solution are applied. The performed mechanical tests showed pronounced negative impact of the PVA addition on both tensile and compressive strength (a decrease of 56 % and 79 %, respectively), while the SAP negatively affected only the compressive strength (a drop of 30 %). In our study, the composite containing SAP reached even slightly higher tensile strength compared to the control (around 7 % increase). The healing action was observed on cracked cementitious composites beams at ideal (i.e. room) temperature, low temperature (10 °C), and after exposure to freeze cycles (–5 to 0 °C). After 28-day immersion in water at the ideal temperature, the series containing SAP and bacterial spores (BAC_SAP) showed the most pronounced healing – the value of the average maximum healed crack width (Δwmax) reached 219 μm. In the case of preliminary freeze cycling, the BAC_SAP also reached the highest values. At low temperatures, the positive impact of SAP seems to be inhibited as Δwmax is the highest in the control series. In all of the applied conditions, insufficient crack-sealing was detectable in the samples containing PVA. Thus, the SAP proved to be applicable for the protection of bacterial spores at ideal temperatures; however, more research concerning its mechanism in cementitious composite at lower temperatures is needed.http://engstroy.spbstu.ru/article/2021.107.13/self-healing concretebacteriacrackspvasuperabsorbent polymers (sap)freezelow temperature
spellingShingle Schreiberova Hana
Trtik Tomas
Chylik Roman
Prosek Zdenek
Seps Karel
Fladr Josef
Bily Petr
Kohoutkova Alena
Self-healing in cementitious composite containing bacteria and protective polymers at various temperatures
Magazine of Civil Engineering
self-healing concrete
bacteria
cracks
pva
superabsorbent polymers (sap)
freeze
low temperature
title Self-healing in cementitious composite containing bacteria and protective polymers at various temperatures
title_full Self-healing in cementitious composite containing bacteria and protective polymers at various temperatures
title_fullStr Self-healing in cementitious composite containing bacteria and protective polymers at various temperatures
title_full_unstemmed Self-healing in cementitious composite containing bacteria and protective polymers at various temperatures
title_short Self-healing in cementitious composite containing bacteria and protective polymers at various temperatures
title_sort self healing in cementitious composite containing bacteria and protective polymers at various temperatures
topic self-healing concrete
bacteria
cracks
pva
superabsorbent polymers (sap)
freeze
low temperature
url http://engstroy.spbstu.ru/article/2021.107.13/
work_keys_str_mv AT schreiberovahana selfhealingincementitiouscompositecontainingbacteriaandprotectivepolymersatvarioustemperatures
AT trtiktomas selfhealingincementitiouscompositecontainingbacteriaandprotectivepolymersatvarioustemperatures
AT chylikroman selfhealingincementitiouscompositecontainingbacteriaandprotectivepolymersatvarioustemperatures
AT prosekzdenek selfhealingincementitiouscompositecontainingbacteriaandprotectivepolymersatvarioustemperatures
AT sepskarel selfhealingincementitiouscompositecontainingbacteriaandprotectivepolymersatvarioustemperatures
AT fladrjosef selfhealingincementitiouscompositecontainingbacteriaandprotectivepolymersatvarioustemperatures
AT bilypetr selfhealingincementitiouscompositecontainingbacteriaandprotectivepolymersatvarioustemperatures
AT kohoutkovaalena selfhealingincementitiouscompositecontainingbacteriaandprotectivepolymersatvarioustemperatures