Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice.
Direct associations between hyperglycemia and atherosclerosis remain unclear. We investigated the association between the amelioration of glycemia by sodium-glucose cotransporter 2 inhibitors (SGLT2is) and macrophage-driven atherosclerosis in diabetic mice. We administered dapagliflozin or ipraglifl...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4659635?pdf=render |
_version_ | 1818251293328670720 |
---|---|
author | Michishige Terasaki Munenori Hiromura Yusaku Mori Kyoko Kohashi Masaharu Nagashima Hideki Kushima Takuya Watanabe Tsutomu Hirano |
author_facet | Michishige Terasaki Munenori Hiromura Yusaku Mori Kyoko Kohashi Masaharu Nagashima Hideki Kushima Takuya Watanabe Tsutomu Hirano |
author_sort | Michishige Terasaki |
collection | DOAJ |
description | Direct associations between hyperglycemia and atherosclerosis remain unclear. We investigated the association between the amelioration of glycemia by sodium-glucose cotransporter 2 inhibitors (SGLT2is) and macrophage-driven atherosclerosis in diabetic mice. We administered dapagliflozin or ipragliflozin (1.0 mg/kg/day) for 4-weeks to apolipoprotein E-null (Apoe-/-) mice, streptozotocin-induced diabetic Apoe-/- mice, and diabetic db/db mice. We then determined aortic atherosclerosis, oxidized low-density lipoprotein (LDL)-induced foam cell formation, and related gene expression in exudate peritoneal macrophages. Dapagliflozin substantially decreased glycated hemoglobin (HbA1c) and glucose tolerance without affecting body weight, blood pressure, plasma insulin, and lipids in diabetic Apoe-/- mice. Aortic atherosclerotic lesions, atheromatous plaque size, and macrophage infiltration in the aortic root increased in diabetic Apoe-/- mice; dapagliflozin attenuated these changes by 33%, 27%, and 20%, respectively. Atherosclerotic lesions or foam cell formation highly correlated with HbA1c. Dapagliflozin did not affect atherosclerosis or plasma parameters in non-diabetic Apoe-/- mice. In db/db mice, foam cell formation increased by 4-fold compared with C57/BL6 mice, whereas ipragliflozin decreased it by 31%. Foam cell formation exhibited a strong correlation with HbA1c. Gene expression of lectin-like ox-LDL receptor-1 and acyl-coenzyme A:cholesterol acyltransferase 1 was upregulated, whereas that of ATP-binding cassette transporter A1 was downregulated in the peritoneal macrophages of both types of diabetic mice. SGLT2i normalized these gene expressions. Our study is the first to demonstrate that SGLT2i exerts anti-atherogenic effects by pure glucose lowering independent of insulin action in diabetic mice through suppressing macrophage foam cell formation, suggesting that foam cell formation is highly sensitive to glycemia ex vivo. |
first_indexed | 2024-12-12T16:05:59Z |
format | Article |
id | doaj.art-48775c39159c47789d62c322366a2668 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-12T16:05:59Z |
publishDate | 2015-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-48775c39159c47789d62c322366a26682022-12-22T00:19:18ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-011011e014339610.1371/journal.pone.0143396Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice.Michishige TerasakiMunenori HiromuraYusaku MoriKyoko KohashiMasaharu NagashimaHideki KushimaTakuya WatanabeTsutomu HiranoDirect associations between hyperglycemia and atherosclerosis remain unclear. We investigated the association between the amelioration of glycemia by sodium-glucose cotransporter 2 inhibitors (SGLT2is) and macrophage-driven atherosclerosis in diabetic mice. We administered dapagliflozin or ipragliflozin (1.0 mg/kg/day) for 4-weeks to apolipoprotein E-null (Apoe-/-) mice, streptozotocin-induced diabetic Apoe-/- mice, and diabetic db/db mice. We then determined aortic atherosclerosis, oxidized low-density lipoprotein (LDL)-induced foam cell formation, and related gene expression in exudate peritoneal macrophages. Dapagliflozin substantially decreased glycated hemoglobin (HbA1c) and glucose tolerance without affecting body weight, blood pressure, plasma insulin, and lipids in diabetic Apoe-/- mice. Aortic atherosclerotic lesions, atheromatous plaque size, and macrophage infiltration in the aortic root increased in diabetic Apoe-/- mice; dapagliflozin attenuated these changes by 33%, 27%, and 20%, respectively. Atherosclerotic lesions or foam cell formation highly correlated with HbA1c. Dapagliflozin did not affect atherosclerosis or plasma parameters in non-diabetic Apoe-/- mice. In db/db mice, foam cell formation increased by 4-fold compared with C57/BL6 mice, whereas ipragliflozin decreased it by 31%. Foam cell formation exhibited a strong correlation with HbA1c. Gene expression of lectin-like ox-LDL receptor-1 and acyl-coenzyme A:cholesterol acyltransferase 1 was upregulated, whereas that of ATP-binding cassette transporter A1 was downregulated in the peritoneal macrophages of both types of diabetic mice. SGLT2i normalized these gene expressions. Our study is the first to demonstrate that SGLT2i exerts anti-atherogenic effects by pure glucose lowering independent of insulin action in diabetic mice through suppressing macrophage foam cell formation, suggesting that foam cell formation is highly sensitive to glycemia ex vivo.http://europepmc.org/articles/PMC4659635?pdf=render |
spellingShingle | Michishige Terasaki Munenori Hiromura Yusaku Mori Kyoko Kohashi Masaharu Nagashima Hideki Kushima Takuya Watanabe Tsutomu Hirano Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice. PLoS ONE |
title | Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice. |
title_full | Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice. |
title_fullStr | Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice. |
title_full_unstemmed | Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice. |
title_short | Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice. |
title_sort | amelioration of hyperglycemia with a sodium glucose cotransporter 2 inhibitor prevents macrophage driven atherosclerosis through macrophage foam cell formation suppression in type 1 and type 2 diabetic mice |
url | http://europepmc.org/articles/PMC4659635?pdf=render |
work_keys_str_mv | AT michishigeterasaki ameliorationofhyperglycemiawithasodiumglucosecotransporter2inhibitorpreventsmacrophagedrivenatherosclerosisthroughmacrophagefoamcellformationsuppressionintype1andtype2diabeticmice AT munenorihiromura ameliorationofhyperglycemiawithasodiumglucosecotransporter2inhibitorpreventsmacrophagedrivenatherosclerosisthroughmacrophagefoamcellformationsuppressionintype1andtype2diabeticmice AT yusakumori ameliorationofhyperglycemiawithasodiumglucosecotransporter2inhibitorpreventsmacrophagedrivenatherosclerosisthroughmacrophagefoamcellformationsuppressionintype1andtype2diabeticmice AT kyokokohashi ameliorationofhyperglycemiawithasodiumglucosecotransporter2inhibitorpreventsmacrophagedrivenatherosclerosisthroughmacrophagefoamcellformationsuppressionintype1andtype2diabeticmice AT masaharunagashima ameliorationofhyperglycemiawithasodiumglucosecotransporter2inhibitorpreventsmacrophagedrivenatherosclerosisthroughmacrophagefoamcellformationsuppressionintype1andtype2diabeticmice AT hidekikushima ameliorationofhyperglycemiawithasodiumglucosecotransporter2inhibitorpreventsmacrophagedrivenatherosclerosisthroughmacrophagefoamcellformationsuppressionintype1andtype2diabeticmice AT takuyawatanabe ameliorationofhyperglycemiawithasodiumglucosecotransporter2inhibitorpreventsmacrophagedrivenatherosclerosisthroughmacrophagefoamcellformationsuppressionintype1andtype2diabeticmice AT tsutomuhirano ameliorationofhyperglycemiawithasodiumglucosecotransporter2inhibitorpreventsmacrophagedrivenatherosclerosisthroughmacrophagefoamcellformationsuppressionintype1andtype2diabeticmice |