A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage
Surface transient storage (STS) and hyporheic transient storage (HTS) have functional significance in stream ecology and hydrology. Currently, tracer techniques couple STS and HTS effects on stream nutrient cycling; however, STS resides in localized areas of the surface stream and HTS resides in the...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2013-07-01
|
Series: | Hydrology and Earth System Sciences |
Online Access: | http://www.hydrol-earth-syst-sci.net/17/2747/2013/hess-17-2747-2013.pdf |
_version_ | 1818511882588258304 |
---|---|
author | T. R. Jackson R. Haggerty S. V. Apte |
author_facet | T. R. Jackson R. Haggerty S. V. Apte |
author_sort | T. R. Jackson |
collection | DOAJ |
description | Surface transient storage (STS) and hyporheic transient storage (HTS) have functional significance in stream ecology and hydrology. Currently, tracer techniques couple STS and HTS effects on stream nutrient cycling; however, STS resides in localized areas of the surface stream and HTS resides in the hyporheic zone. These contrasting environments result in different storage and exchange mechanisms with the surface stream, which can yield contrasting results when comparing transient storage effects among morphologically diverse streams. We propose a fluid mechanics approach to quantitatively separate STS from HTS that involves classifying and studying different types of STS. As a starting point, a classification scheme is needed. This paper introduces a classification scheme that categorizes different STS in riverine systems based on their flow structure. Eight STS types are identified and some are subcategorized based on characteristic mean flow structure: (1) lateral cavities (emergent and submerged); (2) protruding in-channel flow obstructions (backward- and forward-facing step); (3) isolated in-channel flow obstructions (emergent and submerged); (4) cascades and riffles; (5) aquatic vegetation (emergent and submerged); (6) pools (vertically submerged cavity, closed cavity, and recirculating reservoir); (7) meander bends; and (8) confluence of streams. The long-term goal is to use the classification scheme presented to develop predictive mean residence times for different STS using field-measurable hydromorphic parameters and obtain an effective STS mean residence time. The effective STS mean residence time can then be deconvolved from the transient storage residence time distribution (measured from a tracer test) to obtain an estimate of HTS mean residence time. |
first_indexed | 2024-12-10T23:39:05Z |
format | Article |
id | doaj.art-488b1badcfbb4b20b6cd670bcbf7422a |
institution | Directory Open Access Journal |
issn | 1027-5606 1607-7938 |
language | English |
last_indexed | 2024-12-10T23:39:05Z |
publishDate | 2013-07-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Hydrology and Earth System Sciences |
spelling | doaj.art-488b1badcfbb4b20b6cd670bcbf7422a2022-12-22T01:29:05ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382013-07-011772747277910.5194/hess-17-2747-2013A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storageT. R. JacksonR. HaggertyS. V. ApteSurface transient storage (STS) and hyporheic transient storage (HTS) have functional significance in stream ecology and hydrology. Currently, tracer techniques couple STS and HTS effects on stream nutrient cycling; however, STS resides in localized areas of the surface stream and HTS resides in the hyporheic zone. These contrasting environments result in different storage and exchange mechanisms with the surface stream, which can yield contrasting results when comparing transient storage effects among morphologically diverse streams. We propose a fluid mechanics approach to quantitatively separate STS from HTS that involves classifying and studying different types of STS. As a starting point, a classification scheme is needed. This paper introduces a classification scheme that categorizes different STS in riverine systems based on their flow structure. Eight STS types are identified and some are subcategorized based on characteristic mean flow structure: (1) lateral cavities (emergent and submerged); (2) protruding in-channel flow obstructions (backward- and forward-facing step); (3) isolated in-channel flow obstructions (emergent and submerged); (4) cascades and riffles; (5) aquatic vegetation (emergent and submerged); (6) pools (vertically submerged cavity, closed cavity, and recirculating reservoir); (7) meander bends; and (8) confluence of streams. The long-term goal is to use the classification scheme presented to develop predictive mean residence times for different STS using field-measurable hydromorphic parameters and obtain an effective STS mean residence time. The effective STS mean residence time can then be deconvolved from the transient storage residence time distribution (measured from a tracer test) to obtain an estimate of HTS mean residence time.http://www.hydrol-earth-syst-sci.net/17/2747/2013/hess-17-2747-2013.pdf |
spellingShingle | T. R. Jackson R. Haggerty S. V. Apte A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage Hydrology and Earth System Sciences |
title | A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage |
title_full | A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage |
title_fullStr | A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage |
title_full_unstemmed | A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage |
title_short | A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage |
title_sort | fluid mechanics based classification scheme for surface transient storage in riverine environments quantitatively separating surface from hyporheic transient storage |
url | http://www.hydrol-earth-syst-sci.net/17/2747/2013/hess-17-2747-2013.pdf |
work_keys_str_mv | AT trjackson afluidmechanicsbasedclassificationschemeforsurfacetransientstorageinriverineenvironmentsquantitativelyseparatingsurfacefromhyporheictransientstorage AT rhaggerty afluidmechanicsbasedclassificationschemeforsurfacetransientstorageinriverineenvironmentsquantitativelyseparatingsurfacefromhyporheictransientstorage AT svapte afluidmechanicsbasedclassificationschemeforsurfacetransientstorageinriverineenvironmentsquantitativelyseparatingsurfacefromhyporheictransientstorage AT trjackson fluidmechanicsbasedclassificationschemeforsurfacetransientstorageinriverineenvironmentsquantitativelyseparatingsurfacefromhyporheictransientstorage AT rhaggerty fluidmechanicsbasedclassificationschemeforsurfacetransientstorageinriverineenvironmentsquantitativelyseparatingsurfacefromhyporheictransientstorage AT svapte fluidmechanicsbasedclassificationschemeforsurfacetransientstorageinriverineenvironmentsquantitativelyseparatingsurfacefromhyporheictransientstorage |