Summary: | Conventional methodology in the field for the sampling of coffee leaf rust, caused by <i>Hemileia vastatrix</i>, has proven to be impractical. This paper proposes a method for the early detection of this disease, which is the most significant pathogen of coffee plants worldwide, using multispectral images acquired using a Mapir Survey3W camera and an unmanned aerial vehicle (UAV). For this purpose, 160 coffee seedlings of the coffee cultivar ‘Mundo Novo’ were inoculated with urediniospores of <i>H. vastatrix</i> and compared with 160 control (non-inoculated) seedlings to determine the most favorable interval for distinguishing healthy and infected plants. The 320 seedlings were placed on a dark surface to perform the imaging flights. In vitro analyses of the physiological parameters of 20 specimens were then performed for each condition (inoculated/non-inoculated) to obtain the hyperspectral curves, and this process was repeated three times at 15, 30, and 45 days after inoculation (DAI). Based on the simulated hyperspectral curves, a discrepancy between the red and near-infrared (NIR) bands was identified at 15 DAI, with the inoculated plants showing greater absorption in the red band and a greater spectral response in the NIR band. Thus, multispectral images were able to distinguish <i>H. vastatrix</i> infection in coffee seedlings at an asymptomatic stage (15 DAI) using a support vector machines (SVM) algorithm. Detection accuracy was 80% and the Kappa index of agreement was moderate (0.6). The early detection of this pathogen in the field using low-cost technology can be an important tool for the monitoring of coffee leaf rust and, consequently, a more sustainable management of the pathogen, causing farmers to make applications of chemical fungicides only when necessary.
|