On the ‘Definability of Definable’ Problem of Alfred Tarski

In this paper we prove that for any <inline-formula><math display="inline"><semantics><mrow><mi>m</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula> there exists a generic extension of <...

Full description

Bibliographic Details
Main Authors: Vladimir Kanovei, Vassily Lyubetsky
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/12/2214
_version_ 1797544744513961984
author Vladimir Kanovei
Vassily Lyubetsky
author_facet Vladimir Kanovei
Vassily Lyubetsky
author_sort Vladimir Kanovei
collection DOAJ
description In this paper we prove that for any <inline-formula><math display="inline"><semantics><mrow><mi>m</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula> there exists a generic extension of <inline-formula><math display="inline"><semantics><mi mathvariant="bold">L</mi></semantics></math></inline-formula>, the constructible universe, in which it is true that the set of all constructible reals (here subsets of <inline-formula><math display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>) is equal to the set <inline-formula><math display="inline"><semantics><msub><mi mathvariant="bold">D</mi><mrow><mn>1</mn><mi>m</mi></mrow></msub></semantics></math></inline-formula> of all reals definable by a parameter free type-theoretic formula with types bounded by <i>m</i>, and hence the Tarski ‘definability of definable’ sentence <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="bold">D</mi><mrow><mn>1</mn><mi>m</mi></mrow></msub><mo>∈</mo><msub><mi mathvariant="bold">D</mi><mrow><mn>2</mn><mi>m</mi></mrow></msub></mrow></semantics></math></inline-formula> (even in the form <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="bold">D</mi><mrow><mn>1</mn><mi>m</mi></mrow></msub><mo>∈</mo><msub><mi mathvariant="bold">D</mi><mn>21</mn></msub></mrow></semantics></math></inline-formula>) holds for this particular <i>m</i>. This solves an old problem of Alfred Tarski (1948). Our methods, based on the almost-disjoint forcing of Jensen and Solovay, are significant modifications and further development of the methods presented in our two previous papers in this Journal.
first_indexed 2024-03-10T14:05:45Z
format Article
id doaj.art-48985eabad924552a9a8fbbae7bb9aef
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T14:05:45Z
publishDate 2020-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-48985eabad924552a9a8fbbae7bb9aef2023-11-21T00:40:22ZengMDPI AGMathematics2227-73902020-12-01812221410.3390/math8122214On the ‘Definability of Definable’ Problem of Alfred TarskiVladimir Kanovei0Vassily Lyubetsky1Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 127051 Moscow, RussiaInstitute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 127051 Moscow, RussiaIn this paper we prove that for any <inline-formula><math display="inline"><semantics><mrow><mi>m</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula> there exists a generic extension of <inline-formula><math display="inline"><semantics><mi mathvariant="bold">L</mi></semantics></math></inline-formula>, the constructible universe, in which it is true that the set of all constructible reals (here subsets of <inline-formula><math display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>) is equal to the set <inline-formula><math display="inline"><semantics><msub><mi mathvariant="bold">D</mi><mrow><mn>1</mn><mi>m</mi></mrow></msub></semantics></math></inline-formula> of all reals definable by a parameter free type-theoretic formula with types bounded by <i>m</i>, and hence the Tarski ‘definability of definable’ sentence <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="bold">D</mi><mrow><mn>1</mn><mi>m</mi></mrow></msub><mo>∈</mo><msub><mi mathvariant="bold">D</mi><mrow><mn>2</mn><mi>m</mi></mrow></msub></mrow></semantics></math></inline-formula> (even in the form <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="bold">D</mi><mrow><mn>1</mn><mi>m</mi></mrow></msub><mo>∈</mo><msub><mi mathvariant="bold">D</mi><mn>21</mn></msub></mrow></semantics></math></inline-formula>) holds for this particular <i>m</i>. This solves an old problem of Alfred Tarski (1948). Our methods, based on the almost-disjoint forcing of Jensen and Solovay, are significant modifications and further development of the methods presented in our two previous papers in this Journal.https://www.mdpi.com/2227-7390/8/12/2214definability of definabletarski problemtype theoretic hierarchygeneric modelsalmost disjoint forcing
spellingShingle Vladimir Kanovei
Vassily Lyubetsky
On the ‘Definability of Definable’ Problem of Alfred Tarski
Mathematics
definability of definable
tarski problem
type theoretic hierarchy
generic models
almost disjoint forcing
title On the ‘Definability of Definable’ Problem of Alfred Tarski
title_full On the ‘Definability of Definable’ Problem of Alfred Tarski
title_fullStr On the ‘Definability of Definable’ Problem of Alfred Tarski
title_full_unstemmed On the ‘Definability of Definable’ Problem of Alfred Tarski
title_short On the ‘Definability of Definable’ Problem of Alfred Tarski
title_sort on the definability of definable problem of alfred tarski
topic definability of definable
tarski problem
type theoretic hierarchy
generic models
almost disjoint forcing
url https://www.mdpi.com/2227-7390/8/12/2214
work_keys_str_mv AT vladimirkanovei onthedefinabilityofdefinableproblemofalfredtarski
AT vassilylyubetsky onthedefinabilityofdefinableproblemofalfredtarski