Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet

Rubber plantation sector is one of the leading commodities in East Kalimantan Province contributing greatly to non-oil and gas exports. Currently, the price of rubber in the world is increasingly competitive. The aim of this research is to predict the rubber prices as a reference for the government...

Full description

Bibliographic Details
Main Authors: Julius Rinaldi Simanungkalit, Haviluddin Haviluddin, Herman Santoso Pakpahan, Novianti Puspitasari, Masna Wati
Format: Article
Language:English
Published: Fakultas Ilmu Komputer UMI 2020-04-01
Series:Ilkom Jurnal Ilmiah
Subjects:
Online Access:http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/521
_version_ 1819127602228494336
author Julius Rinaldi Simanungkalit
Haviluddin Haviluddin
Herman Santoso Pakpahan
Novianti Puspitasari
Masna Wati
author_facet Julius Rinaldi Simanungkalit
Haviluddin Haviluddin
Herman Santoso Pakpahan
Novianti Puspitasari
Masna Wati
author_sort Julius Rinaldi Simanungkalit
collection DOAJ
description Rubber plantation sector is one of the leading commodities in East Kalimantan Province contributing greatly to non-oil and gas exports. Currently, the price of rubber in the world is increasingly competitive. The aim of this research is to predict the rubber prices as a reference for the government and companies in making policies and preparing work plans. Data of 60 months during the period of 2014-2018 taken from Plantation office of East Kalimantan Province has been analyzed using Backpropagation Neural Network (BPNN) algorithm in predicting rubber prices. Based on the testing results, parameters of the BPNN algorithm with ratio of 4: 1, architectural models 5-10-10-10-1, trainlm learning function, learning rate of 0.5, error tolerance of 0.01, and epoch of 1000 have gained good accuracy with a mean square error (MSE) of 0.00015464. The results showed that the BPNN algorithm can be used as an alternative method in forecasting.
first_indexed 2024-12-22T08:14:32Z
format Article
id doaj.art-489e7d3efb3445d581952778baeeaad1
institution Directory Open Access Journal
issn 2087-1716
2548-7779
language English
last_indexed 2024-12-22T08:14:32Z
publishDate 2020-04-01
publisher Fakultas Ilmu Komputer UMI
record_format Article
series Ilkom Jurnal Ilmiah
spelling doaj.art-489e7d3efb3445d581952778baeeaad12022-12-21T18:32:56ZengFakultas Ilmu Komputer UMIIlkom Jurnal Ilmiah2087-17162548-77792020-04-01121323810.33096/ilkom.v12i1.521.32-38197Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman KaretJulius Rinaldi Simanungkalit0Haviluddin Haviluddin1Herman Santoso Pakpahan2Novianti Puspitasari3Masna Wati4Universitas MulawarmanUniversitas MulawarmanUniversitas MulawarmanUniversitas MulawarmanUniversitas MulawarmanRubber plantation sector is one of the leading commodities in East Kalimantan Province contributing greatly to non-oil and gas exports. Currently, the price of rubber in the world is increasingly competitive. The aim of this research is to predict the rubber prices as a reference for the government and companies in making policies and preparing work plans. Data of 60 months during the period of 2014-2018 taken from Plantation office of East Kalimantan Province has been analyzed using Backpropagation Neural Network (BPNN) algorithm in predicting rubber prices. Based on the testing results, parameters of the BPNN algorithm with ratio of 4: 1, architectural models 5-10-10-10-1, trainlm learning function, learning rate of 0.5, error tolerance of 0.01, and epoch of 1000 have gained good accuracy with a mean square error (MSE) of 0.00015464. The results showed that the BPNN algorithm can be used as an alternative method in forecasting.http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/521commodityrubber pricespredictionbpnnmse
spellingShingle Julius Rinaldi Simanungkalit
Haviluddin Haviluddin
Herman Santoso Pakpahan
Novianti Puspitasari
Masna Wati
Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet
Ilkom Jurnal Ilmiah
commodity
rubber prices
prediction
bpnn
mse
title Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet
title_full Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet
title_fullStr Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet
title_full_unstemmed Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet
title_short Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet
title_sort algoritma backpropagation neural network dalam memprediksi harga komoditi tanaman karet
topic commodity
rubber prices
prediction
bpnn
mse
url http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/521
work_keys_str_mv AT juliusrinaldisimanungkalit algoritmabackpropagationneuralnetworkdalammemprediksihargakomodititanamankaret
AT haviluddinhaviluddin algoritmabackpropagationneuralnetworkdalammemprediksihargakomodititanamankaret
AT hermansantosopakpahan algoritmabackpropagationneuralnetworkdalammemprediksihargakomodititanamankaret
AT noviantipuspitasari algoritmabackpropagationneuralnetworkdalammemprediksihargakomodititanamankaret
AT masnawati algoritmabackpropagationneuralnetworkdalammemprediksihargakomodititanamankaret