Universal black holes

Abstract We prove that a generalized Schwarzschild-like ansatz can be consistently employed to construct d-dimensional static vacuum black hole solutions in any metric theory of gravity for which the Lagrangian is a scalar invariant constructed from the Riemann tensor and its covariant derivatives o...

Full description

Bibliographic Details
Main Authors: Sigbjørn Hervik, Marcello Ortaggio
Format: Article
Language:English
Published: SpringerOpen 2020-02-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP02(2020)047
Description
Summary:Abstract We prove that a generalized Schwarzschild-like ansatz can be consistently employed to construct d-dimensional static vacuum black hole solutions in any metric theory of gravity for which the Lagrangian is a scalar invariant constructed from the Riemann tensor and its covariant derivatives of arbitrary order. Namely, we show that, apart from containing two arbitrary functions a(r) and f (r) (essentially, the g tt and g rr components), in any such theory the line-element may admit as a base space any isotropy-irreducible homogeneous space. Technically, this ensures that the field equations generically reduce to two ODEs for a(r) and f (r), and dramatically enlarges the space of black hole solutions and permitted horizon geometries for the considered theories. We then exemplify our results in concrete contexts by constructing solutions in particular theories such as Gauss-Bonnet, quadratic, F(R) and F(Lovelock) gravity, and certain conformal gravities.
ISSN:1029-8479