Cold Deuterium Fractionation in the Nearest Planet-forming Disk

Deuterium fractionation provides a window into the thermal history of volatiles in the solar system and protoplanetary disks. While evidence of active molecular deuteration has been observed toward a handful of disks, it remains unclear whether this chemistry affects the composition of forming plane...

Full description

Bibliographic Details
Main Authors: Carlos E. Romero-Mirza, Karin I. Öberg, Charles J. Law, Richard Teague, Yuri Aikawa, Jennifer B. Bergner, David J. Wilner, Jane Huang, Viviana V. Guzmán, L. Ilsedore Cleeves
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/aca765
_version_ 1827122602505666560
author Carlos E. Romero-Mirza
Karin I. Öberg
Charles J. Law
Richard Teague
Yuri Aikawa
Jennifer B. Bergner
David J. Wilner
Jane Huang
Viviana V. Guzmán
L. Ilsedore Cleeves
author_facet Carlos E. Romero-Mirza
Karin I. Öberg
Charles J. Law
Richard Teague
Yuri Aikawa
Jennifer B. Bergner
David J. Wilner
Jane Huang
Viviana V. Guzmán
L. Ilsedore Cleeves
author_sort Carlos E. Romero-Mirza
collection DOAJ
description Deuterium fractionation provides a window into the thermal history of volatiles in the solar system and protoplanetary disks. While evidence of active molecular deuteration has been observed toward a handful of disks, it remains unclear whether this chemistry affects the composition of forming planetesimals due to limited observational constraints on the radial and vertical distribution of deuterated molecules. To shed light on this question, we introduce new Atacama Large Millimeter/submillimeter Array observations of DCO ^+ and DCN J = 2–1 at an angular resolution of 0.″5 (30 au) and combine them with archival data of higher energy transitions toward the protoplanetary disk around TW Hya. We carry out a radial excitation analysis assuming both LTE and non-LTE to localize the physical conditions traced by DCO ^+ and DCN emission in the disk, thus assessing deuterium fractionation efficiencies and pathways at different disk locations. We find similar disk-averaged column densities of 1.9 × 10 ^12 and 9.8 × 10 ^11 cm ^−2 for DCO ^+ and DCN, with typical kinetic temperatures for both molecules of 20–30 K, indicating a common origin near the comet- and planet-forming midplane. The observed DCO ^+ /DCN abundance ratio, combined with recent modeling results, provide tentative evidence of a gas-phase C/O enhancement within <40 au. Observations of DCO ^+ and DCN in other disks, as well as HCN and HCO ^+ , will be necessary to place the trends exhibited by TW Hya in context, and fully constrain the main deuteration mechanisms in disks.
first_indexed 2024-03-12T04:33:43Z
format Article
id doaj.art-48ac0a8ad0eb42f7ade8d646c70f6ab8
institution Directory Open Access Journal
issn 1538-4357
language English
last_indexed 2025-03-20T14:11:38Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal
spelling doaj.art-48ac0a8ad0eb42f7ade8d646c70f6ab82024-09-10T13:55:21ZengIOP PublishingThe Astrophysical Journal1538-43572023-01-0194313510.3847/1538-4357/aca765Cold Deuterium Fractionation in the Nearest Planet-forming DiskCarlos E. Romero-Mirza0https://orcid.org/0000-0001-7152-9794Karin I. Öberg1https://orcid.org/0000-0001-8798-1347Charles J. Law2https://orcid.org/0000-0003-1413-1776Richard Teague3https://orcid.org/0000-0003-1534-5186Yuri Aikawa4https://orcid.org/0000-0003-3283-6884Jennifer B. Bergner5https://orcid.org/0000-0002-8716-0482David J. Wilner6https://orcid.org/0000-0003-1526-7587Jane Huang7https://orcid.org/0000-0001-6947-6072Viviana V. Guzmán8https://orcid.org/0000-0003-4784-3040L. Ilsedore Cleeves9https://orcid.org/0000-0003-2076-8001C enter for Astrophysics ∣ Harvard & Smithsonian , Cambridge, MA 02138, USA ; carlos.munoz_romero@cfa.harvard.eduC enter for Astrophysics ∣ Harvard & Smithsonian , Cambridge, MA 02138, USA ; carlos.munoz_romero@cfa.harvard.eduC enter for Astrophysics ∣ Harvard & Smithsonian , Cambridge, MA 02138, USA ; carlos.munoz_romero@cfa.harvard.eduC enter for Astrophysics ∣ Harvard & Smithsonian , Cambridge, MA 02138, USA ; carlos.munoz_romero@cfa.harvard.edu; Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, MA 02139, USADepartment of Astronomy, Graduate School of Science, University of Tokyo , Tokyo 113-0033, JapanDepartment of the Geophysical Sciences, University of Chicago , Chicago, IL 60637, USAC enter for Astrophysics ∣ Harvard & Smithsonian , Cambridge, MA 02138, USA ; carlos.munoz_romero@cfa.harvard.eduDepartment of Astronomy, University of Michigan , 323 West Hall, 1085 S. University Avenue, Ann Arbor, MI 48109, USAInstituto de Astrofísica, Pontificia Universidad Católica de Chile , Avenida Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile; Núcleo Milenio de Formación Planetaria (NPF) , Gran Bretaña 1111, Valparaiso, ChileAstronomy Department, University of Virginia , Charlottesville, VA 22904, USADeuterium fractionation provides a window into the thermal history of volatiles in the solar system and protoplanetary disks. While evidence of active molecular deuteration has been observed toward a handful of disks, it remains unclear whether this chemistry affects the composition of forming planetesimals due to limited observational constraints on the radial and vertical distribution of deuterated molecules. To shed light on this question, we introduce new Atacama Large Millimeter/submillimeter Array observations of DCO ^+ and DCN J = 2–1 at an angular resolution of 0.″5 (30 au) and combine them with archival data of higher energy transitions toward the protoplanetary disk around TW Hya. We carry out a radial excitation analysis assuming both LTE and non-LTE to localize the physical conditions traced by DCO ^+ and DCN emission in the disk, thus assessing deuterium fractionation efficiencies and pathways at different disk locations. We find similar disk-averaged column densities of 1.9 × 10 ^12 and 9.8 × 10 ^11 cm ^−2 for DCO ^+ and DCN, with typical kinetic temperatures for both molecules of 20–30 K, indicating a common origin near the comet- and planet-forming midplane. The observed DCO ^+ /DCN abundance ratio, combined with recent modeling results, provide tentative evidence of a gas-phase C/O enhancement within <40 au. Observations of DCO ^+ and DCN in other disks, as well as HCN and HCO ^+ , will be necessary to place the trends exhibited by TW Hya in context, and fully constrain the main deuteration mechanisms in disks.https://doi.org/10.3847/1538-4357/aca765Protoplanetary disksPlanet formationIsotopic abundancesAstrochemistry
spellingShingle Carlos E. Romero-Mirza
Karin I. Öberg
Charles J. Law
Richard Teague
Yuri Aikawa
Jennifer B. Bergner
David J. Wilner
Jane Huang
Viviana V. Guzmán
L. Ilsedore Cleeves
Cold Deuterium Fractionation in the Nearest Planet-forming Disk
The Astrophysical Journal
Protoplanetary disks
Planet formation
Isotopic abundances
Astrochemistry
title Cold Deuterium Fractionation in the Nearest Planet-forming Disk
title_full Cold Deuterium Fractionation in the Nearest Planet-forming Disk
title_fullStr Cold Deuterium Fractionation in the Nearest Planet-forming Disk
title_full_unstemmed Cold Deuterium Fractionation in the Nearest Planet-forming Disk
title_short Cold Deuterium Fractionation in the Nearest Planet-forming Disk
title_sort cold deuterium fractionation in the nearest planet forming disk
topic Protoplanetary disks
Planet formation
Isotopic abundances
Astrochemistry
url https://doi.org/10.3847/1538-4357/aca765
work_keys_str_mv AT carloseromeromirza colddeuteriumfractionationinthenearestplanetformingdisk
AT karinioberg colddeuteriumfractionationinthenearestplanetformingdisk
AT charlesjlaw colddeuteriumfractionationinthenearestplanetformingdisk
AT richardteague colddeuteriumfractionationinthenearestplanetformingdisk
AT yuriaikawa colddeuteriumfractionationinthenearestplanetformingdisk
AT jenniferbbergner colddeuteriumfractionationinthenearestplanetformingdisk
AT davidjwilner colddeuteriumfractionationinthenearestplanetformingdisk
AT janehuang colddeuteriumfractionationinthenearestplanetformingdisk
AT vivianavguzman colddeuteriumfractionationinthenearestplanetformingdisk
AT lilsedorecleeves colddeuteriumfractionationinthenearestplanetformingdisk