MECHANICAL STRUCTURE DESIGN TO AVOID FRICTION-INDUCED INSTABILITIES: IN-PLANE ANISOTROPY AND IN-PLANE ASYMMETRY
The stability of a two-degree-of-freedom (2DOF) sliding system with the velocity-weakening friction was examined by the eigenvalue analysis, where the in-plane anisotropy and the in-plane asymmetry were considered. The obtained eigenvalues were organized by using the minimum modal damping ratio as t...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Niš
2019-07-01
|
Series: | Facta Universitatis. Series: Mechanical Engineering |
Online Access: | http://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/view/5170 |
Summary: | The stability of a two-degree-of-freedom (2DOF) sliding system with the velocity-weakening friction was examined by the eigenvalue analysis, where the in-plane anisotropy and the in-plane asymmetry were considered. The obtained eigenvalues were organized by using the minimum modal damping ratio as the stability maps. Selecting a stable point in the stability map corresponds automatically to embedding the Yaw-Angle-Misalignment (YAM) method in the mechanical structure design to avoid the instability. If we accept the mechanical structure design of sliding systems with the in-plane anisotropy and the in-plane asymmetry, we can find new stable conditions spread widely in the two-dimensional space, which are invisible from the conventional point of view. |
---|---|
ISSN: | 0354-2025 2335-0164 |