Light-responsive microRNA molecules in human retinal organoids are differentially regulated by distinct wavelengths of light

Summary: Cells in the human retina must rapidly adapt to constantly changing visual stimuli. This fast adaptation to varying levels and wavelengths of light helps to regulate circadian rhythms and allows for adaptation to high levels of illumination, thereby enabling the rest of the visual system to...

Full description

Bibliographic Details
Main Authors: Canan Celiker, Kamila Weissova, Katerina Amruz Cerna, Jan Oppelt, Birthe Dorgau, Francisco Molina Gambin, Jana Sebestikova, Majlinda Lako, Evelyne Sernagor, Petra Liskova, Tomas Barta
Format: Article
Language:English
Published: Elsevier 2023-07-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004223013147
Description
Summary:Summary: Cells in the human retina must rapidly adapt to constantly changing visual stimuli. This fast adaptation to varying levels and wavelengths of light helps to regulate circadian rhythms and allows for adaptation to high levels of illumination, thereby enabling the rest of the visual system to remain responsive. It has been shown that retinal microRNA (miRNA) molecules play a key role in regulating these processes. However, despite extensive research using various model organisms, light-regulated miRNAs in human retinal cells remain unknown. Here, we aim to characterize these miRNAs. We generated light-responsive human retinal organoids that express miRNA families and clusters typically found in the retina. Using an in-house developed photostimulation device, we identified a subset of light-regulated miRNAs. Importantly, we found that these miRNAs are differentially regulated by distinct wavelengths of light and have a rapid turnover, highlighting the dynamic and adaptive nature of the human retina.
ISSN:2589-0042