Assisted clustering of gene expression data using regulatory data from partially overlapping sets of individuals
Abstract Background As omics measurements profiled on different molecular layers are interconnected, integrative approaches that incorporate the regulatory effect from multi-level omics data are needed. When the multi-level omics data are from the same individuals, gene expression (GE) clusters can...
Päätekijät: | Wenqing Jiang, Roby Joehanes, Daniel Levy, George T O’Connor, Josée Dupuis |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
BMC
2022-12-01
|
Sarja: | BMC Genomics |
Aiheet: | |
Linkit: | https://doi.org/10.1186/s12864-022-09026-1 |
Samankaltaisia teoksia
-
Clustering multilayer omics data using MuNCut
Tekijä: Sebastian J. Teran Hidalgo, et al.
Julkaistu: (2018-03-01) -
Anterior mediastinal masses in the Framingham Heart Study: Prevalence and CT image characteristics
Tekijä: Tetsuro Araki, et al.
Julkaistu: (2015-01-01) -
PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data
Tekijä: Amina Lemsara, et al.
Julkaistu: (2020-04-01) -
Partition Quantitative Assessment (PQA): A Quantitative Methodology to Assess the Embedded Noise in Clustered Omics and Systems Biology Data
Tekijä: Diego A. Camacho-Hernández, et al.
Julkaistu: (2021-06-01) -
Evaluation of Machine Learning Models for Predicting Cardiovascular Disease Based on Framingham Heart Study Data
Tekijä: Ruddy J Suhatril, et al.
Julkaistu: (2024-04-01)