Multiple positive solutions for Dirichlet problem of prescribed mean curvature equations in Minkowski spaces

In this article, we consider the Dirichlet problem for the prescribed mean curvature equation in the Minkowski space, $$\displaylines{ -\hbox{div}\Big(\frac {\nabla u}{\sqrt{1-|\nabla u|^2}}\Big) =\lambda f(u) \quad \text{in } B_R,\cr u=0 \quad \text{on } \partial B_R, }$$ where $B_R:=\{x\in...

Full description

Bibliographic Details
Main Authors: Ruyun Ma, Tianlan Chen
Format: Article
Language:English
Published: Texas State University 2016-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/180/abstr.html
Description
Summary:In this article, we consider the Dirichlet problem for the prescribed mean curvature equation in the Minkowski space, $$\displaylines{ -\hbox{div}\Big(\frac {\nabla u}{\sqrt{1-|\nabla u|^2}}\Big) =\lambda f(u) \quad \text{in } B_R,\cr u=0 \quad \text{on } \partial B_R, }$$ where $B_R:=\{x\in \mathbb{R}^N: |x|< R\}$, $\lambda>0$ is a parameter and $f:[0, \infty)\to\mathbb{R}$ is continuous. We apply some standard variational techniques to show how changes in the sign of f lead to multiple positive solutions of the above problem for sufficiently large $\lambda$.
ISSN:1072-6691