Atomic‐Scale Visualization and Quantification of Configurational Entropy in Relation to Thermal Conductivity: A Proof‐of‐Principle Study in t‐GeSb2Te4

Abstract It remains a daunting task to quantify the configurational entropy of a material from atom‐revolved electron microscopy images and correlate the results with the material's lattice thermal conductivity, which strides across statics, dynamics, and thermal transport of crystal lattice ov...

Full description

Bibliographic Details
Main Authors: Yongjin Chen, Bin Zhang, Yongsheng Zhang, Hong Wu, Kunling Peng, Hengquan Yang, Qing Zhang, Xiaopeng Liu, Yisheng Chai, Xu Lu, Guoyu Wang, Ze Zhang, Jian He, Xiaodong Han, Xiaoyuan Zhou
Format: Article
Language:English
Published: Wiley 2021-04-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202002051
_version_ 1818947376859054080
author Yongjin Chen
Bin Zhang
Yongsheng Zhang
Hong Wu
Kunling Peng
Hengquan Yang
Qing Zhang
Xiaopeng Liu
Yisheng Chai
Xu Lu
Guoyu Wang
Ze Zhang
Jian He
Xiaodong Han
Xiaoyuan Zhou
author_facet Yongjin Chen
Bin Zhang
Yongsheng Zhang
Hong Wu
Kunling Peng
Hengquan Yang
Qing Zhang
Xiaopeng Liu
Yisheng Chai
Xu Lu
Guoyu Wang
Ze Zhang
Jian He
Xiaodong Han
Xiaoyuan Zhou
author_sort Yongjin Chen
collection DOAJ
description Abstract It remains a daunting task to quantify the configurational entropy of a material from atom‐revolved electron microscopy images and correlate the results with the material's lattice thermal conductivity, which strides across statics, dynamics, and thermal transport of crystal lattice over orders of magnitudes in length and time. Here, a proof‐of‐principle study of atomic‐scale visualization and quantification of configurational entropy in relation to thermal conductivity in single crystalline trigonal GeSb2Te4 (aka t‐GeSb2Te4) with native atomic site disorder is reported. A concerted effort of large t‐GeSb2Te4 single crystal growth, in‐lab developed analysis procedure of atomic column intensity, the visualization and quantification of configurational entropy including corresponding modulation, and thermal transport measurements enable an entropic “bottom‐up” perspective to the lattice thermal conductivity of t‐GeSb2Te4. It is uncovered that the configurational entropy increases phonon scattering and reduces phonon mean free path as well as promotes anharmonicity, thereby giving rise to low lattice thermal conductivity and promising thermoelectric performance. The current study sheds lights on an atomic scale bottom‐up configurational entropy design in diverse regimes of structural and functional materials research and applications.
first_indexed 2024-12-20T08:29:56Z
format Article
id doaj.art-48f3fdb13161431cba79fcd35f3ad563
institution Directory Open Access Journal
issn 2198-3844
language English
last_indexed 2024-12-20T08:29:56Z
publishDate 2021-04-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj.art-48f3fdb13161431cba79fcd35f3ad5632022-12-21T19:46:45ZengWileyAdvanced Science2198-38442021-04-0188n/an/a10.1002/advs.202002051Atomic‐Scale Visualization and Quantification of Configurational Entropy in Relation to Thermal Conductivity: A Proof‐of‐Principle Study in t‐GeSb2Te4Yongjin Chen0Bin Zhang1Yongsheng Zhang2Hong Wu3Kunling Peng4Hengquan Yang5Qing Zhang6Xiaopeng Liu7Yisheng Chai8Xu Lu9Guoyu Wang10Ze Zhang11Jian He12Xiaodong Han13Xiaoyuan Zhou14College of Physics and Center for Quantum Materials and Devices Institute of Advanced Interdisciplinary Studies Chongqing University Chongqing 401331 P. R. ChinaAnalytical and Testing Center Chongqing University Chongqing 401331 P. R. ChinaKey Laboratory of Materials Physics Institute of Solid State Physics Chinese Academy of Sciences Hefei 230031 P. R. ChinaCollege of Physics and Center for Quantum Materials and Devices Institute of Advanced Interdisciplinary Studies Chongqing University Chongqing 401331 P. R. ChinaCollege of Physics and Center for Quantum Materials and Devices Institute of Advanced Interdisciplinary Studies Chongqing University Chongqing 401331 P. R. ChinaCollege of Physics and Center for Quantum Materials and Devices Institute of Advanced Interdisciplinary Studies Chongqing University Chongqing 401331 P. R. ChinaBeijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100124 P. R. ChinaCollege of Physics and Center for Quantum Materials and Devices Institute of Advanced Interdisciplinary Studies Chongqing University Chongqing 401331 P. R. ChinaCollege of Physics and Center for Quantum Materials and Devices Institute of Advanced Interdisciplinary Studies Chongqing University Chongqing 401331 P. R. ChinaCollege of Physics and Center for Quantum Materials and Devices Institute of Advanced Interdisciplinary Studies Chongqing University Chongqing 401331 P. R. ChinaChongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. ChinaBeijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100124 P. R. ChinaDepartment of Physics and Astronomy Clemson University Clemson SC 29634‐0978 USABeijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100124 P. R. ChinaCollege of Physics and Center for Quantum Materials and Devices Institute of Advanced Interdisciplinary Studies Chongqing University Chongqing 401331 P. R. ChinaAbstract It remains a daunting task to quantify the configurational entropy of a material from atom‐revolved electron microscopy images and correlate the results with the material's lattice thermal conductivity, which strides across statics, dynamics, and thermal transport of crystal lattice over orders of magnitudes in length and time. Here, a proof‐of‐principle study of atomic‐scale visualization and quantification of configurational entropy in relation to thermal conductivity in single crystalline trigonal GeSb2Te4 (aka t‐GeSb2Te4) with native atomic site disorder is reported. A concerted effort of large t‐GeSb2Te4 single crystal growth, in‐lab developed analysis procedure of atomic column intensity, the visualization and quantification of configurational entropy including corresponding modulation, and thermal transport measurements enable an entropic “bottom‐up” perspective to the lattice thermal conductivity of t‐GeSb2Te4. It is uncovered that the configurational entropy increases phonon scattering and reduces phonon mean free path as well as promotes anharmonicity, thereby giving rise to low lattice thermal conductivity and promising thermoelectric performance. The current study sheds lights on an atomic scale bottom‐up configurational entropy design in diverse regimes of structural and functional materials research and applications.https://doi.org/10.1002/advs.202002051configurational entropysingle crystalline GeSb2Te4thermal conductivity
spellingShingle Yongjin Chen
Bin Zhang
Yongsheng Zhang
Hong Wu
Kunling Peng
Hengquan Yang
Qing Zhang
Xiaopeng Liu
Yisheng Chai
Xu Lu
Guoyu Wang
Ze Zhang
Jian He
Xiaodong Han
Xiaoyuan Zhou
Atomic‐Scale Visualization and Quantification of Configurational Entropy in Relation to Thermal Conductivity: A Proof‐of‐Principle Study in t‐GeSb2Te4
Advanced Science
configurational entropy
single crystalline GeSb2Te4
thermal conductivity
title Atomic‐Scale Visualization and Quantification of Configurational Entropy in Relation to Thermal Conductivity: A Proof‐of‐Principle Study in t‐GeSb2Te4
title_full Atomic‐Scale Visualization and Quantification of Configurational Entropy in Relation to Thermal Conductivity: A Proof‐of‐Principle Study in t‐GeSb2Te4
title_fullStr Atomic‐Scale Visualization and Quantification of Configurational Entropy in Relation to Thermal Conductivity: A Proof‐of‐Principle Study in t‐GeSb2Te4
title_full_unstemmed Atomic‐Scale Visualization and Quantification of Configurational Entropy in Relation to Thermal Conductivity: A Proof‐of‐Principle Study in t‐GeSb2Te4
title_short Atomic‐Scale Visualization and Quantification of Configurational Entropy in Relation to Thermal Conductivity: A Proof‐of‐Principle Study in t‐GeSb2Te4
title_sort atomic scale visualization and quantification of configurational entropy in relation to thermal conductivity a proof of principle study in t gesb2te4
topic configurational entropy
single crystalline GeSb2Te4
thermal conductivity
url https://doi.org/10.1002/advs.202002051
work_keys_str_mv AT yongjinchen atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT binzhang atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT yongshengzhang atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT hongwu atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT kunlingpeng atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT hengquanyang atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT qingzhang atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT xiaopengliu atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT yishengchai atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT xulu atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT guoyuwang atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT zezhang atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT jianhe atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT xiaodonghan atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4
AT xiaoyuanzhou atomicscalevisualizationandquantificationofconfigurationalentropyinrelationtothermalconductivityaproofofprinciplestudyintgesb2te4