Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross section

Evaporated α-spectra have been measured in coincidence with low energy discrete γ-rays from residual nucleus 68Zn populated by αn evaporation from compound nucleus 73Ge produced in the reaction 64Ni(9Be,αn)68Zn at E(9Be) = 30 MeV. Low energy γ-gated α-particle spectra, for the first time, have been...

Full description

Bibliographic Details
Main Authors: Rajkumar Santra, Balaram Dey, Subinit Roy, Md.S.R. Laskar, R. Palit, H. Pai, S. Rajbanshi, Sajad Ali, Saikat Bhattacharjee, F.S. Babra, Anjali Mukherjee, S. Jadhav, Balaji S. Naidu, Abraham T. Vazhappilly, Sanjoy Pal
Format: Article
Language:English
Published: Elsevier 2020-07-01
Series:Physics Letters B
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269320302914
_version_ 1818926704245080064
author Rajkumar Santra
Balaram Dey
Subinit Roy
Md.S.R. Laskar
R. Palit
H. Pai
S. Rajbanshi
Sajad Ali
Saikat Bhattacharjee
F.S. Babra
Anjali Mukherjee
S. Jadhav
Balaji S. Naidu
Abraham T. Vazhappilly
Sanjoy Pal
author_facet Rajkumar Santra
Balaram Dey
Subinit Roy
Md.S.R. Laskar
R. Palit
H. Pai
S. Rajbanshi
Sajad Ali
Saikat Bhattacharjee
F.S. Babra
Anjali Mukherjee
S. Jadhav
Balaji S. Naidu
Abraham T. Vazhappilly
Sanjoy Pal
author_sort Rajkumar Santra
collection DOAJ
description Evaporated α-spectra have been measured in coincidence with low energy discrete γ-rays from residual nucleus 68Zn populated by αn evaporation from compound nucleus 73Ge produced in the reaction 64Ni(9Be,αn)68Zn at E(9Be) = 30 MeV. Low energy γ-gated α-particle spectra, for the first time, have been used to extract the nuclear level density (NLD) for the intermediate 69Zn nucleus in the excitation energy range of E ≈ 4-20 MeV. The slope of present NLD data as a function of excitation energy for 69Zn matches nicely with the slope determined from RIPL estimates for NLD at low energies and the NLD from neutron resonance data at neutron separation energy Sn. The extracted inverse NLD parameter (k = A/a˜) has been used to determine the nuclear level density parameter value a at neutron separation energy Sn for 69Zn. The cross section of 68Zn(n,γ) capture reaction as a function of neutron energy is then estimated employing the derived a(Sn) in the reaction code TALYS. It is found that the estimated neutron capture cross section agrees well with the available experimental data without any normalization. The present result indicates that experimentally derived nuclear level density parameter can constrain the statistical model description of astrophysical capture cross section and optimize the uncertainties associated with astrophysical reaction rate.
first_indexed 2024-12-20T03:01:21Z
format Article
id doaj.art-48f8c39ae9ac44018e5b6ecdf76307dd
institution Directory Open Access Journal
issn 0370-2693
language English
last_indexed 2024-12-20T03:01:21Z
publishDate 2020-07-01
publisher Elsevier
record_format Article
series Physics Letters B
spelling doaj.art-48f8c39ae9ac44018e5b6ecdf76307dd2022-12-21T19:55:45ZengElsevierPhysics Letters B0370-26932020-07-01806135487Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross sectionRajkumar Santra0Balaram Dey1Subinit Roy2Md.S.R. Laskar3R. Palit4H. Pai5S. Rajbanshi6Sajad Ali7Saikat Bhattacharjee8F.S. Babra9Anjali Mukherjee10S. Jadhav11Balaji S. Naidu12Abraham T. Vazhappilly13Sanjoy Pal14Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata-700064, India; Homi Bhabha National Institute, Mumbai-400094, IndiaDepartment of Physics, Bankura University, Bankura-722155, IndiaNuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata-700064, India; Corresponding author.Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005, IndiaDepartment of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005, IndiaNuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata-700064, IndiaDepartment of Physics, Presidency University, Kolkata-700073, IndiaNuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata-700064, India; Homi Bhabha National Institute, Mumbai-400094, IndiaNuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata-700064, India; Homi Bhabha National Institute, Mumbai-400094, IndiaDepartment of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005, IndiaNuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata-700064, IndiaDepartment of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005, IndiaDepartment of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005, IndiaDepartment of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005, IndiaDepartment of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005, IndiaEvaporated α-spectra have been measured in coincidence with low energy discrete γ-rays from residual nucleus 68Zn populated by αn evaporation from compound nucleus 73Ge produced in the reaction 64Ni(9Be,αn)68Zn at E(9Be) = 30 MeV. Low energy γ-gated α-particle spectra, for the first time, have been used to extract the nuclear level density (NLD) for the intermediate 69Zn nucleus in the excitation energy range of E ≈ 4-20 MeV. The slope of present NLD data as a function of excitation energy for 69Zn matches nicely with the slope determined from RIPL estimates for NLD at low energies and the NLD from neutron resonance data at neutron separation energy Sn. The extracted inverse NLD parameter (k = A/a˜) has been used to determine the nuclear level density parameter value a at neutron separation energy Sn for 69Zn. The cross section of 68Zn(n,γ) capture reaction as a function of neutron energy is then estimated employing the derived a(Sn) in the reaction code TALYS. It is found that the estimated neutron capture cross section agrees well with the available experimental data without any normalization. The present result indicates that experimentally derived nuclear level density parameter can constrain the statistical model description of astrophysical capture cross section and optimize the uncertainties associated with astrophysical reaction rate.http://www.sciencedirect.com/science/article/pii/S0370269320302914Compound nuclear reactionEvaporation particle spectraNuclear level densityNeutron capture cross section
spellingShingle Rajkumar Santra
Balaram Dey
Subinit Roy
Md.S.R. Laskar
R. Palit
H. Pai
S. Rajbanshi
Sajad Ali
Saikat Bhattacharjee
F.S. Babra
Anjali Mukherjee
S. Jadhav
Balaji S. Naidu
Abraham T. Vazhappilly
Sanjoy Pal
Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross section
Physics Letters B
Compound nuclear reaction
Evaporation particle spectra
Nuclear level density
Neutron capture cross section
title Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross section
title_full Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross section
title_fullStr Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross section
title_full_unstemmed Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross section
title_short Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross section
title_sort nuclear level density of 69zn from gamma gated particle spectrum and its implication on 68zn n γ 69zn capture cross section
topic Compound nuclear reaction
Evaporation particle spectra
Nuclear level density
Neutron capture cross section
url http://www.sciencedirect.com/science/article/pii/S0370269320302914
work_keys_str_mv AT rajkumarsantra nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT balaramdey nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT subinitroy nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT mdsrlaskar nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT rpalit nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT hpai nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT srajbanshi nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT sajadali nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT saikatbhattacharjee nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT fsbabra nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT anjalimukherjee nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT sjadhav nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT balajisnaidu nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT abrahamtvazhappilly nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection
AT sanjoypal nuclearleveldensityof69znfromgammagatedparticlespectrumanditsimplicationon68znng69zncapturecrosssection