Investigation on thermal-hydraulic performance prediction of a new parallel-flow shell and tube heat exchanger with different surrogate models

The thermal-hydraulic performance of a new parallel-flow shell and tube heat exchanger (STHX) with equilateral cross-sectioned wire coil (HCBetwc-STHX) is investigated in turbulent regime. Four different surrogate models are established to predict the thermal-hydraulic performance. Their merits and...

Full description

Bibliographic Details
Main Authors: Fu Xinghua, Wang Youqiang, Yu Chulin, Zhang Haiqing, Wang Jin, Gao Bingjun
Format: Article
Language:English
Published: De Gruyter 2020-12-01
Series:Open Physics
Subjects:
Online Access:https://doi.org/10.1515/phys-2020-0218
Description
Summary:The thermal-hydraulic performance of a new parallel-flow shell and tube heat exchanger (STHX) with equilateral cross-sectioned wire coil (HCBetwc-STHX) is investigated in turbulent regime. Four different surrogate models are established to predict the thermal-hydraulic performance. Their merits and drawbacks are illustrated. The results show that the Nuetwc/NuRRB and f etwc/f RRB are in the range of 1.1638–1.855 and 4.078–16.062, respectively. The precision of CFM is the lowest, whereas the precision of radial basis function + artificial neural network and Kriging model is the highest. A good balance can be achieved by response surface methodology between precision and cost. Finally, a general analysis procedure is presented for the predicting method of thermal-hydraulic performance of different STHX with relatively small cost and high precision.
ISSN:2391-5471