Correlation Effects in Trimeric Acylphloroglucinols
Trimeric acylphloroglucinols (T-ACPLs) are a subclass of the large class of acylphloroglucinols—derivatives of 1,3,5-trihydroxybenzene containing an R–C=O group. T-ACPL molecules contain three acylphloroglucinol moieties linked by methylene bridges. Many of them are present in natural sources and ex...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | Computation |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-3197/9/11/121 |
_version_ | 1827676939040587776 |
---|---|
author | Liliana Mammino |
author_facet | Liliana Mammino |
author_sort | Liliana Mammino |
collection | DOAJ |
description | Trimeric acylphloroglucinols (T-ACPLs) are a subclass of the large class of acylphloroglucinols—derivatives of 1,3,5-trihydroxybenzene containing an R–C=O group. T-ACPL molecules contain three acylphloroglucinol moieties linked by methylene bridges. Many of them are present in natural sources and exhibit biological activities, often better than the corresponding activities of monomeric acylphloroglucinols. All the stable conformers of T-ACPLs contain seven intramolecular hydrogen bonds, which constitute the dominant stabilising factors. A total of 38 different T-ACPLs, including both naturally occurring and model molecules, have been calculated at the HF and DFT/B3LYP levels. The DFT/B3LYP calculations were carried out both without and with Grimme’s dispersion correction, to highlight the dispersion (and, therefore, also electron correlation) effects for these molecules. The roles of dispersion are evaluated considering the effects of Grimme’s correction on the estimation of the conformers’ energies, the description of the characteristics of the individual hydrogen bonds, the conformers’ geometries and other molecular properties. Overall, the results offer a comprehensive overview of the conformational preferences of T-ACPL molecules, their intramolecular hydrogen bond patterns, and the correlation effects on their properties. |
first_indexed | 2024-03-10T05:35:18Z |
format | Article |
id | doaj.art-4910708b267f4b6abb672f1ba12927af |
institution | Directory Open Access Journal |
issn | 2079-3197 |
language | English |
last_indexed | 2024-03-10T05:35:18Z |
publishDate | 2021-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Computation |
spelling | doaj.art-4910708b267f4b6abb672f1ba12927af2023-11-22T22:56:47ZengMDPI AGComputation2079-31972021-11-0191112110.3390/computation9110121Correlation Effects in Trimeric AcylphloroglucinolsLiliana Mammino0School of Mathematical and Natural Science, University of Venda, Thohoyandou 0950, South AfricaTrimeric acylphloroglucinols (T-ACPLs) are a subclass of the large class of acylphloroglucinols—derivatives of 1,3,5-trihydroxybenzene containing an R–C=O group. T-ACPL molecules contain three acylphloroglucinol moieties linked by methylene bridges. Many of them are present in natural sources and exhibit biological activities, often better than the corresponding activities of monomeric acylphloroglucinols. All the stable conformers of T-ACPLs contain seven intramolecular hydrogen bonds, which constitute the dominant stabilising factors. A total of 38 different T-ACPLs, including both naturally occurring and model molecules, have been calculated at the HF and DFT/B3LYP levels. The DFT/B3LYP calculations were carried out both without and with Grimme’s dispersion correction, to highlight the dispersion (and, therefore, also electron correlation) effects for these molecules. The roles of dispersion are evaluated considering the effects of Grimme’s correction on the estimation of the conformers’ energies, the description of the characteristics of the individual hydrogen bonds, the conformers’ geometries and other molecular properties. Overall, the results offer a comprehensive overview of the conformational preferences of T-ACPL molecules, their intramolecular hydrogen bond patterns, and the correlation effects on their properties.https://www.mdpi.com/2079-3197/9/11/121acylphloroglucinolseffects of electron correlation on molecular propertieselectron correlationGrimme’s dispersion correctionintramolecular hydrogen bondingstacking interactions |
spellingShingle | Liliana Mammino Correlation Effects in Trimeric Acylphloroglucinols Computation acylphloroglucinols effects of electron correlation on molecular properties electron correlation Grimme’s dispersion correction intramolecular hydrogen bonding stacking interactions |
title | Correlation Effects in Trimeric Acylphloroglucinols |
title_full | Correlation Effects in Trimeric Acylphloroglucinols |
title_fullStr | Correlation Effects in Trimeric Acylphloroglucinols |
title_full_unstemmed | Correlation Effects in Trimeric Acylphloroglucinols |
title_short | Correlation Effects in Trimeric Acylphloroglucinols |
title_sort | correlation effects in trimeric acylphloroglucinols |
topic | acylphloroglucinols effects of electron correlation on molecular properties electron correlation Grimme’s dispersion correction intramolecular hydrogen bonding stacking interactions |
url | https://www.mdpi.com/2079-3197/9/11/121 |
work_keys_str_mv | AT lilianamammino correlationeffectsintrimericacylphloroglucinols |