Changes in Viability and Taste Compounds of Crassostrea gigas during Depuration and Waterless Live Storage

To explore the changes in the viability and taste compounds of Crassostrea gigas at different circulation stages after harvesting, the oysters were sampled at different times of depuration, induced dormancy and waterless live storage for evaluation of viability changes in terms of adenosine triphosp...

Full description

Bibliographic Details
Main Author: LIN Hengzong, GAO Jialong, LIANG Zhiyuan, QIN Xiaoming, FAN Xiuping, LIN Haisheng, CAO Wenhong, HUANG Yanping
Format: Article
Language:English
Published: China Food Publishing Company 2023-02-01
Series:Shipin Kexue
Subjects:
Online Access:https://www.spkx.net.cn/fileup/1002-6630/PDF/2023-44-4-030.pdf
_version_ 1811159485524213760
author LIN Hengzong, GAO Jialong, LIANG Zhiyuan, QIN Xiaoming, FAN Xiuping, LIN Haisheng, CAO Wenhong, HUANG Yanping
author_facet LIN Hengzong, GAO Jialong, LIANG Zhiyuan, QIN Xiaoming, FAN Xiuping, LIN Haisheng, CAO Wenhong, HUANG Yanping
author_sort LIN Hengzong, GAO Jialong, LIANG Zhiyuan, QIN Xiaoming, FAN Xiuping, LIN Haisheng, CAO Wenhong, HUANG Yanping
collection DOAJ
description To explore the changes in the viability and taste compounds of Crassostrea gigas at different circulation stages after harvesting, the oysters were sampled at different times of depuration, induced dormancy and waterless live storage for evaluation of viability changes in terms of adenosine triphosphate (ATP) related compounds, adenylate energy charge (AEC) and free amino acids and evaluation of flavor quality changes with respect to contents and taste activity values (TAV) of taste compounds. The results showed that the viability and taste compounds of C. gigas were significantly influenced by postharvest transportation and environmental stress. All viability indicators were significantly restored by 24 h depuration, with ATP, AEC and the content of total free amino acids being significantly higher than before depuration (P < 0.05), indicating that the viability reached new levels. During the process from induced dormancy to waterless live storage, more energy substances were required to maintain the balance of the organism under low temperature and hypoxia stress, so all viability indicators were significantly lower than before depuration (P < 0.05) and remained stable at a lower level. Among the taste compounds, the content of umami amino acids increased and the content of bitter amino acids decreased in C. gigas after depuration, and the content of taste amino acids decreased slowly as the waterless live storage time increased. The umami?nucleotides inosine 5’-monphosphate (IMP) and adenosine 5’-monophosphate (AMP) were accumulated throughout the circulation process (P < 0.05); the total amount of organic acids showed a fluctuant downward trend, with the amount of lactic acid being significantly higher after than before depuration (P < 0.05) and showing a decreasing trend from dormancy to the end of waterless live storage (P < 0.05), while the amounts of succinic acid and malic acid showed an increasing trend during waterless live storage (P < 0.05). The levels of Na+ and K+, which play an auxiliary role in the umami taste of C. gigas, were higher after 9 days of waterless live storage than before depuration. The total amount of taste substances did not change overall. The TAV of taste compounds showed that Asp, Glu, Arg, Ala, IMP, lactic acid, succinic acid, Na+ and K+ contributed significantly to the taste of C. gigas. In conclusion, the viability and taste substances of C. gigas can be maintained at a high level by depuration for 24 hours + gradient cooling to induce dormancy + ecological ice temperature waterless live storage for 9 days after harvesting.
first_indexed 2024-04-10T05:41:56Z
format Article
id doaj.art-4915d63184934387ae05e66a003a9a01
institution Directory Open Access Journal
issn 1002-6630
language English
last_indexed 2024-04-10T05:41:56Z
publishDate 2023-02-01
publisher China Food Publishing Company
record_format Article
series Shipin Kexue
spelling doaj.art-4915d63184934387ae05e66a003a9a012023-03-06T07:13:33ZengChina Food Publishing CompanyShipin Kexue1002-66302023-02-0144422423110.7506/spkx1002-6630-20211231-366Changes in Viability and Taste Compounds of Crassostrea gigas during Depuration and Waterless Live StorageLIN Hengzong, GAO Jialong, LIANG Zhiyuan, QIN Xiaoming, FAN Xiuping, LIN Haisheng, CAO Wenhong, HUANG Yanping0(National Research and Development Branch Center for Shellfish Processing, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China)To explore the changes in the viability and taste compounds of Crassostrea gigas at different circulation stages after harvesting, the oysters were sampled at different times of depuration, induced dormancy and waterless live storage for evaluation of viability changes in terms of adenosine triphosphate (ATP) related compounds, adenylate energy charge (AEC) and free amino acids and evaluation of flavor quality changes with respect to contents and taste activity values (TAV) of taste compounds. The results showed that the viability and taste compounds of C. gigas were significantly influenced by postharvest transportation and environmental stress. All viability indicators were significantly restored by 24 h depuration, with ATP, AEC and the content of total free amino acids being significantly higher than before depuration (P < 0.05), indicating that the viability reached new levels. During the process from induced dormancy to waterless live storage, more energy substances were required to maintain the balance of the organism under low temperature and hypoxia stress, so all viability indicators were significantly lower than before depuration (P < 0.05) and remained stable at a lower level. Among the taste compounds, the content of umami amino acids increased and the content of bitter amino acids decreased in C. gigas after depuration, and the content of taste amino acids decreased slowly as the waterless live storage time increased. The umami?nucleotides inosine 5’-monphosphate (IMP) and adenosine 5’-monophosphate (AMP) were accumulated throughout the circulation process (P < 0.05); the total amount of organic acids showed a fluctuant downward trend, with the amount of lactic acid being significantly higher after than before depuration (P < 0.05) and showing a decreasing trend from dormancy to the end of waterless live storage (P < 0.05), while the amounts of succinic acid and malic acid showed an increasing trend during waterless live storage (P < 0.05). The levels of Na+ and K+, which play an auxiliary role in the umami taste of C. gigas, were higher after 9 days of waterless live storage than before depuration. The total amount of taste substances did not change overall. The TAV of taste compounds showed that Asp, Glu, Arg, Ala, IMP, lactic acid, succinic acid, Na+ and K+ contributed significantly to the taste of C. gigas. In conclusion, the viability and taste substances of C. gigas can be maintained at a high level by depuration for 24 hours + gradient cooling to induce dormancy + ecological ice temperature waterless live storage for 9 days after harvesting.https://www.spkx.net.cn/fileup/1002-6630/PDF/2023-44-4-030.pdfcrassostrea gigas; waterless live storage; viability; non-volatile compounds; flavor quality
spellingShingle LIN Hengzong, GAO Jialong, LIANG Zhiyuan, QIN Xiaoming, FAN Xiuping, LIN Haisheng, CAO Wenhong, HUANG Yanping
Changes in Viability and Taste Compounds of Crassostrea gigas during Depuration and Waterless Live Storage
Shipin Kexue
crassostrea gigas; waterless live storage; viability; non-volatile compounds; flavor quality
title Changes in Viability and Taste Compounds of Crassostrea gigas during Depuration and Waterless Live Storage
title_full Changes in Viability and Taste Compounds of Crassostrea gigas during Depuration and Waterless Live Storage
title_fullStr Changes in Viability and Taste Compounds of Crassostrea gigas during Depuration and Waterless Live Storage
title_full_unstemmed Changes in Viability and Taste Compounds of Crassostrea gigas during Depuration and Waterless Live Storage
title_short Changes in Viability and Taste Compounds of Crassostrea gigas during Depuration and Waterless Live Storage
title_sort changes in viability and taste compounds of crassostrea gigas during depuration and waterless live storage
topic crassostrea gigas; waterless live storage; viability; non-volatile compounds; flavor quality
url https://www.spkx.net.cn/fileup/1002-6630/PDF/2023-44-4-030.pdf
work_keys_str_mv AT linhengzonggaojialongliangzhiyuanqinxiaomingfanxiupinglinhaishengcaowenhonghuangyanping changesinviabilityandtastecompoundsofcrassostreagigasduringdepurationandwaterlesslivestorage