Uma fórmula para a equação de sexto grau
Pelo teorema de Abel-Ruffini equações de grau igual ou superior a 5 não podem, na maioria das vezes, serem resolvidas por radicais. Por conta desse teorema apresentaremos uma fórmula que resolve casos específicos de equações do sexto grau utilizando como base o polinômio de Martinelli. Para entende...
Main Author: | |
---|---|
Format: | Article |
Language: | Portuguese |
Published: |
UNESP
2020-12-01
|
Series: | CQD Revista Eletrônica Paulista de Matemática |
Subjects: | |
Online Access: | https://sistemas.fc.unesp.br/ojs/index.php/revistacqd/article/view/304 |
Summary: | Pelo teorema de Abel-Ruffini equações de grau igual ou superior a 5 não podem, na maioria das vezes, serem resolvidas por radicais. Por conta desse teorema apresentaremos uma fórmula que resolve casos específicos de equações do sexto grau utilizando como base o polinômio de Martinelli. Para entendermos melhor como funciona essa fórmula faremos a resolução de uma equação de sexto grau como exemplo. Veremos também que todas as equações do sexto grau que obecedem o critério dos coeficientes possuem uma resolvente que é uma equação de quinto grau a qual pode ser separada em uma de segundo grau e outra de terceiro grau. Ao decorrer do artigo veremos uma demonstração da relação de uma equação de sexto grau possível de ser resolvida por radicais com a fórmula que será apresentada neste artigo.
|
---|---|
ISSN: | 2316-9664 |