Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields

For a given integer <i>n</i>, we provide some families of imaginary quadratic number fields of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck&qu...

Full description

Bibliographic Details
Main Author: Kwang-Seob Kim
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/14/2488
_version_ 1797445394422038528
author Kwang-Seob Kim
author_facet Kwang-Seob Kim
author_sort Kwang-Seob Kim
collection DOAJ
description For a given integer <i>n</i>, we provide some families of imaginary quadratic number fields of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">Q</mi><mo>(</mo><msqrt><mrow><mn>4</mn><msup><mi>q</mi><mn>2</mn></msup><mo>−</mo><msup><mi>p</mi><mi>n</mi></msup></mrow></msqrt><mo>)</mo></mrow></semantics></math></inline-formula>, whose ideal class group has a subgroup isomorphic to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">Z</mi><mo>/</mo><mi>n</mi><mi mathvariant="double-struck">Z</mi></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-09T13:26:09Z
format Article
id doaj.art-4947eee1b75a4c7d89cee2e597706cea
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T13:26:09Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-4947eee1b75a4c7d89cee2e597706cea2023-11-30T21:24:04ZengMDPI AGMathematics2227-73902022-07-011014248810.3390/math10142488Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic FieldsKwang-Seob Kim0Department of Mathematics, Chosun University, 309 Pilmundaero, Gwangju 61452, KoreaFor a given integer <i>n</i>, we provide some families of imaginary quadratic number fields of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">Q</mi><mo>(</mo><msqrt><mrow><mn>4</mn><msup><mi>q</mi><mn>2</mn></msup><mo>−</mo><msup><mi>p</mi><mi>n</mi></msup></mrow></msqrt><mo>)</mo></mrow></semantics></math></inline-formula>, whose ideal class group has a subgroup isomorphic to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">Z</mi><mo>/</mo><mi>n</mi><mi mathvariant="double-struck">Z</mi></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/10/14/2488class numberimaginary quadratic fieldsdivisibility of class number
spellingShingle Kwang-Seob Kim
Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields
Mathematics
class number
imaginary quadratic fields
divisibility of class number
title Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields
title_full Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields
title_fullStr Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields
title_full_unstemmed Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields
title_short Some Remarks on the Divisibility of the Class Numbers of Imaginary Quadratic Fields
title_sort some remarks on the divisibility of the class numbers of imaginary quadratic fields
topic class number
imaginary quadratic fields
divisibility of class number
url https://www.mdpi.com/2227-7390/10/14/2488
work_keys_str_mv AT kwangseobkim someremarksonthedivisibilityoftheclassnumbersofimaginaryquadraticfields