Imaging Simulation for Synthetic Aperture Radar: A Full-Wave Approach

Imaging simulation of synthetic aperture radar (SAR) is one of the potential tools in the field of remote sensing. The echo signal in imaging simulation based on the point target model cannot be linked to practical scenes due to the model being a simple mathematical form, stating only the synthetic...

Full description

Bibliographic Details
Main Authors: Chiung-Shen Ku, Kun-Shan Chen, Pao-Chi Chang, Yang-Lang Chang
Format: Article
Language:English
Published: MDPI AG 2018-09-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/10/9/1404
Description
Summary:Imaging simulation of synthetic aperture radar (SAR) is one of the potential tools in the field of remote sensing. The echo signal in imaging simulation based on the point target model cannot be linked to practical scenes due to the model being a simple mathematical form, stating only the synthetic process and lacking the physical process based on electromagnetic theory. In this paper, the full-wave method is applied to include the electromagnetic effects in raw data generation, and then a refined omega-K algorithm is used to perform image focusing. According to the proposed method, the focused images not only demonstrate the difference under dielectric constant variation but also present the diversified interaction among the targets with the spacing change. In addition, the images are simulated in different observation modes and bandwidths to provide a satisfactory reference for the design of system parameters. The simulation results from the full-wave method also compare well with chamber experiments. The simulation of SAR imaging based on a full-wave method offers more complete recovery of scattering information and is useful in designing future novel SAR systems and in speckle reduction analysis.
ISSN:2072-4292