Summary: | Given its importance in water resources management, particularly in terms of minimizing flood or drought hazards, precipitation forecasting has seen a wide variety of approaches tested. As monthly precipitation time series have nonlinear features and multiple time scales, wavelet, seasonal auto regressive integrated moving average (SARIMA) and hybrid artificial neural network (ANN) methods were tested for their ability to accurately predict monthly precipitation. A 40-year (1970–2009) precipitation time series from Iran’s Nahavand meteorological station (34°12’N lat., 48°22’E long.) was decomposed into one low frequency subseries and several high frequency sub-series by wavelet transform. The low frequency sub-series were predicted with a SARIMA model, while high frequency subseries were predicted with an ANN. Finally, the predicted subseries were reconstructed to predict the precipitation of future single months. Comparing model-generated values with observed data, the wavelet-SARIMA-ANN model was seen to outperform wavelet-ANN and wavelet-SARIMA models in terms of precipitation forecasting accuracy.
|