Identification of DNA Methylation Changes in European Beech Seeds during Desiccation and Storage

Ageing and deterioration of seeds is a major problem for the maintenance of seed quality and viability during long-term storage. Prediction of early stages of seed deterioration in order to point out the plantlets’ regeneration time is a major challenge of successful storage. In preserved seeds, dam...

Full description

Bibliographic Details
Main Authors: Marcin Michalak, Beata Patrycja Plitta-Michalak, Jan Suszka, Mirosława Zofia Naskręt-Barciszewska, Szymon Kotlarski, Jan Barciszewski, Paweł Chmielarz
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/4/3557
Description
Summary:Ageing and deterioration of seeds is a major problem for the maintenance of seed quality and viability during long-term storage. Prediction of early stages of seed deterioration in order to point out the plantlets’ regeneration time is a major challenge of successful storage. In preserved seeds, damages accumulate within cells at the rate mainly related to their moisture content and temperature of storage. Current research reveals global alterations in DNA methylation in lipid-rich intermediate seeds during desiccation and storage at various regimes covering nonoptimal and optimal conditions. We show for the first time that monitoring of 5-methylcytosine (m<sup>5</sup>C) level in seeds can be used as a truly universal viability marker regardless of postharvest category of seeds and their composition. For seeds stored up to three years, in varied conditions, moisture content, temperature, and time of storage had significant influence on seedling emergence and DNA methylation (<i>p</i> < 0.05). Similarities among lipid-rich intermediate and orthodox seeds regarding different reactions of embryonic axes and cotyledons to desiccation are newly revealed. Along with previous studies on seeds dramatically different in desiccation tolerance (recalcitrant vs. orthodox), results regarding lipid-rich seeds positioned in-between (intermediate) prove that maintaining global DNA methylation status is crucial for maintaining seed viability.
ISSN:1661-6596
1422-0067