Summary: | Solid oxide fuel cells (SOFCs) are a highly efficient chemical to electrical energy conversion devices that have potential in a global energy strategy. The wide adoption of SOFCs is currently limited by cost and concerns about cell durability. Improved understanding of their degradation modes and mechanisms combined with reduction⁻oxidation stable anodes via all-ceramic-anode cell technology are expected to lead to durability improvements, while economies of scale for production will mitigate cost of commercialization. This paper presents an Ishikawa analysis and a failure modes, mechanisms, effects, and criticality analysis (FMMECA) for all-ceramic anode based SOFCs. FMMECA takes into account the life cycle conditions, multiple failure mechanisms, and their potential effects on fuel-cell health and safety.
|