Turtle soup, Prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin).
Diamondback terrapins (Malaclemys terrapin) were a popular food item in early twentieth century America, and were consumed in soup with sherry. Intense market demand for terrapin meat resulted in population declines, notably along the Atlantic seaboard. Efforts to supply terrapins to markets resulte...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2017-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5549917?pdf=render |
_version_ | 1818294237244948480 |
---|---|
author | Paul E Converse Shawn R Kuchta J Susanne Hauswaldt Willem M Roosenburg |
author_facet | Paul E Converse Shawn R Kuchta J Susanne Hauswaldt Willem M Roosenburg |
author_sort | Paul E Converse |
collection | DOAJ |
description | Diamondback terrapins (Malaclemys terrapin) were a popular food item in early twentieth century America, and were consumed in soup with sherry. Intense market demand for terrapin meat resulted in population declines, notably along the Atlantic seaboard. Efforts to supply terrapins to markets resulted in translocation events, as individuals were moved about to stock terrapin farms. However, in 1920 the market for turtle soup buckled with the enactment of the eighteenth amendment to the United States' Constitution-which initiated the prohibition of alcoholic drinks-and many terrapin fisheries dumped their stocks into local waters. We used microsatellite data to show that patterns of genetic diversity along the terrapin's coastal range are consistent with historical accounts of translocation and cultivation activities. We identified possible instances of human-mediated dispersal by estimating gene flow over historical and contemporary timescales, Bayesian model testing, and bottleneck tests. We recovered six genotypic clusters along the Gulf and Atlantic coasts with varying degrees of admixture, including increased contemporary gene flow from Texas to South Carolina, from North Carolina to Maryland, and from North Carolina to New York. In addition, Bayesian models incorporating translocation events outperformed stepping-stone models. Finally, we were unable to detect population bottlenecks, possibly due to translocation reintroducing genetic diversity into bottlenecked populations. Our data suggest that current patterns of genetic diversity in the terrapin were altered by the demand for turtle soup followed by the enactment of alcohol prohibition. In addition, our study shows that population genetic tools can elucidate metapopulation dynamics in taxa with complex genetic histories impacted by anthropogenic activities. |
first_indexed | 2024-12-13T03:28:33Z |
format | Article |
id | doaj.art-498f7c2159fc4ec1aecfc36e2d58c4cc |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-13T03:28:33Z |
publishDate | 2017-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-498f7c2159fc4ec1aecfc36e2d58c4cc2022-12-22T00:01:12ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-01128e018189810.1371/journal.pone.0181898Turtle soup, Prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin).Paul E ConverseShawn R KuchtaJ Susanne HauswaldtWillem M RoosenburgDiamondback terrapins (Malaclemys terrapin) were a popular food item in early twentieth century America, and were consumed in soup with sherry. Intense market demand for terrapin meat resulted in population declines, notably along the Atlantic seaboard. Efforts to supply terrapins to markets resulted in translocation events, as individuals were moved about to stock terrapin farms. However, in 1920 the market for turtle soup buckled with the enactment of the eighteenth amendment to the United States' Constitution-which initiated the prohibition of alcoholic drinks-and many terrapin fisheries dumped their stocks into local waters. We used microsatellite data to show that patterns of genetic diversity along the terrapin's coastal range are consistent with historical accounts of translocation and cultivation activities. We identified possible instances of human-mediated dispersal by estimating gene flow over historical and contemporary timescales, Bayesian model testing, and bottleneck tests. We recovered six genotypic clusters along the Gulf and Atlantic coasts with varying degrees of admixture, including increased contemporary gene flow from Texas to South Carolina, from North Carolina to Maryland, and from North Carolina to New York. In addition, Bayesian models incorporating translocation events outperformed stepping-stone models. Finally, we were unable to detect population bottlenecks, possibly due to translocation reintroducing genetic diversity into bottlenecked populations. Our data suggest that current patterns of genetic diversity in the terrapin were altered by the demand for turtle soup followed by the enactment of alcohol prohibition. In addition, our study shows that population genetic tools can elucidate metapopulation dynamics in taxa with complex genetic histories impacted by anthropogenic activities.http://europepmc.org/articles/PMC5549917?pdf=render |
spellingShingle | Paul E Converse Shawn R Kuchta J Susanne Hauswaldt Willem M Roosenburg Turtle soup, Prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin). PLoS ONE |
title | Turtle soup, Prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin). |
title_full | Turtle soup, Prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin). |
title_fullStr | Turtle soup, Prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin). |
title_full_unstemmed | Turtle soup, Prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin). |
title_short | Turtle soup, Prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin). |
title_sort | turtle soup prohibition and the population genetic structure of diamondback terrapins malaclemys terrapin |
url | http://europepmc.org/articles/PMC5549917?pdf=render |
work_keys_str_mv | AT pauleconverse turtlesoupprohibitionandthepopulationgeneticstructureofdiamondbackterrapinsmalaclemysterrapin AT shawnrkuchta turtlesoupprohibitionandthepopulationgeneticstructureofdiamondbackterrapinsmalaclemysterrapin AT jsusannehauswaldt turtlesoupprohibitionandthepopulationgeneticstructureofdiamondbackterrapinsmalaclemysterrapin AT willemmroosenburg turtlesoupprohibitionandthepopulationgeneticstructureofdiamondbackterrapinsmalaclemysterrapin |