It’s Time for Entropic Clocks: The Roles of Random Chain Protein Sequences in Timing Ion Channel Processes Underlying Action Potential Properties

In recent years, it has become clear that intrinsically disordered protein segments play diverse functional roles in many cellular processes, thus leading to a reassessment of the classical structure–function paradigm. One class of intrinsically disordered protein segments is entropic clocks, corres...

Full description

Bibliographic Details
Main Authors: Esraa Nsasra, Irit Dahan, Jerry Eichler, Ofer Yifrach
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/9/1351
Description
Summary:In recent years, it has become clear that intrinsically disordered protein segments play diverse functional roles in many cellular processes, thus leading to a reassessment of the classical structure–function paradigm. One class of intrinsically disordered protein segments is entropic clocks, corresponding to unstructured random protein chains involved in timing cellular processes. Such clocks were shown to modulate ion channel processes underlying action potential generation, propagation, and transmission. In this review, we survey the role of entropic clocks in timing intra- and inter-molecular binding events of voltage-activated potassium channels involved in gating and clustering processes, respectively, and where both are known to occur according to a similar ‘ball and chain’ mechanism. We begin by delineating the thermodynamic and timing signatures of a ‘ball and chain’-based binding mechanism involving entropic clocks, followed by a detailed analysis of the use of such a mechanism in the prototypical <i>Shaker</i> voltage-activated K<sup>+</sup> channel model protein, with particular emphasis on ion channel clustering. We demonstrate how ‘chain’-level alternative splicing of the Kv channel gene modulates entropic clock-based ‘ball and chain’ inactivation and clustering channel functions. As such, the Kv channel model system exemplifies how linkage between alternative splicing and intrinsic disorder enables the functional diversity underlying changes in electrical signaling.
ISSN:1099-4300