Further results on permutation polynomials and complete permutation polynomials over finite fields

In this paper, by employing the AGW criterion and determining the number of solutions to some equations over finite fields, we further investigate nine classes of permutation polynomials over $ \mathbb{F}_{p^n} $ with the form $ (x^{p^m}-x+\delta)^{s_1}+(x^{p^m}-x+\delta)^{s_2}+x $ and propose five...

Full description

Bibliographic Details
Main Authors: Qian Liu, Jianrui Xie, Ximeng Liu, Jian Zou
Format: Article
Language:English
Published: AIMS Press 2021-09-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021783?viewType=HTML
_version_ 1823935077391794176
author Qian Liu
Jianrui Xie
Ximeng Liu
Jian Zou
author_facet Qian Liu
Jianrui Xie
Ximeng Liu
Jian Zou
author_sort Qian Liu
collection DOAJ
description In this paper, by employing the AGW criterion and determining the number of solutions to some equations over finite fields, we further investigate nine classes of permutation polynomials over $ \mathbb{F}_{p^n} $ with the form $ (x^{p^m}-x+\delta)^{s_1}+(x^{p^m}-x+\delta)^{s_2}+x $ and propose five classes of complete permutation polynomials over $ \mathbb{F}_{p^{2m}} $ with the form $ ax^{p^m}+bx+h(x^{p^m}-x) $.
first_indexed 2024-12-16T22:30:31Z
format Article
id doaj.art-499901e87d054b2e8814948c3a7a822a
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-16T22:30:31Z
publishDate 2021-09-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-499901e87d054b2e8814948c3a7a822a2022-12-21T22:13:46ZengAIMS PressAIMS Mathematics2473-69882021-09-01612135031351410.3934/math.2021783Further results on permutation polynomials and complete permutation polynomials over finite fieldsQian Liu0Jianrui Xie 1Ximeng Liu2Jian Zou31. College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China 2. Key Laboratory of Information Security of Network Systems, Fuzhou University, Fuzhou 350116, China3. imec-COSIC, KU Leuven, Leuven, Belgium1. College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China 2. Key Laboratory of Information Security of Network Systems, Fuzhou University, Fuzhou 350116, China1. College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China 2. Key Laboratory of Information Security of Network Systems, Fuzhou University, Fuzhou 350116, ChinaIn this paper, by employing the AGW criterion and determining the number of solutions to some equations over finite fields, we further investigate nine classes of permutation polynomials over $ \mathbb{F}_{p^n} $ with the form $ (x^{p^m}-x+\delta)^{s_1}+(x^{p^m}-x+\delta)^{s_2}+x $ and propose five classes of complete permutation polynomials over $ \mathbb{F}_{p^{2m}} $ with the form $ ax^{p^m}+bx+h(x^{p^m}-x) $.https://www.aimspress.com/article/doi/10.3934/math.2021783?viewType=HTMLfinite fieldagw criterionpermutation polynomialcomplete permutation polynomial
spellingShingle Qian Liu
Jianrui Xie
Ximeng Liu
Jian Zou
Further results on permutation polynomials and complete permutation polynomials over finite fields
AIMS Mathematics
finite field
agw criterion
permutation polynomial
complete permutation polynomial
title Further results on permutation polynomials and complete permutation polynomials over finite fields
title_full Further results on permutation polynomials and complete permutation polynomials over finite fields
title_fullStr Further results on permutation polynomials and complete permutation polynomials over finite fields
title_full_unstemmed Further results on permutation polynomials and complete permutation polynomials over finite fields
title_short Further results on permutation polynomials and complete permutation polynomials over finite fields
title_sort further results on permutation polynomials and complete permutation polynomials over finite fields
topic finite field
agw criterion
permutation polynomial
complete permutation polynomial
url https://www.aimspress.com/article/doi/10.3934/math.2021783?viewType=HTML
work_keys_str_mv AT qianliu furtherresultsonpermutationpolynomialsandcompletepermutationpolynomialsoverfinitefields
AT jianruixie furtherresultsonpermutationpolynomialsandcompletepermutationpolynomialsoverfinitefields
AT ximengliu furtherresultsonpermutationpolynomialsandcompletepermutationpolynomialsoverfinitefields
AT jianzou furtherresultsonpermutationpolynomialsandcompletepermutationpolynomialsoverfinitefields