Deep learning algorithm reveals two prognostic subtypes in patients with gliomas

Abstract Background Gliomas are highly complex and heterogeneous tumors, rendering prognosis prediction challenging. The advent of deep learning algorithms and the accessibility of multi-omic data represent a new approach for the identification of survival-sensitive subtypes. Herein, an autoencoder-...

Full description

Bibliographic Details
Main Authors: Jing Tian, Mingzhen Zhu, Zijing Ren, Qiang Zhao, Puqing Wang, Colin K. He, Min Zhang, Xiaochun Peng, Beilei Wu, Rujia Feng, Minglong Fu
Format: Article
Language:English
Published: BMC 2022-10-01
Series:BMC Bioinformatics
Subjects:
Online Access:https://doi.org/10.1186/s12859-022-04970-x
Description
Summary:Abstract Background Gliomas are highly complex and heterogeneous tumors, rendering prognosis prediction challenging. The advent of deep learning algorithms and the accessibility of multi-omic data represent a new approach for the identification of survival-sensitive subtypes. Herein, an autoencoder-based approach was used to identify two survival-sensitive subtypes using RNA sequencing (RNA-seq) and DNA methylation (DNAm) data from The Cancer Genome Atlas (TCGA) dataset. The subtypes were used as labels to build a support vector machine model with cross-validation. We validated the robustness of the model on Chinese Glioma Genome Atlas (CGGA) dataset. DNAm-driven genes were identified by integrating DNAm and gene expression profiling analyses using the R MethylMix package and carried out for further enrichment analysis. Results For TCGA dataset, the model produced a high C-index (0.92 ± 0.02), low brier score (0.16 ± 0.02), and significant log-rank p value (p < 0.0001). The model also had a decent performance for CGGA dataset (CGGA DNAm: C-index of 0.70, brier score of 0.21; CGGA RNA-seq: C-index of 0.79, brier score of 0.18). Moreover, we identified 389 DNAm-driven genes of survival-sensitive subtypes, which were significantly enriched in the glutathione metabolism pathway. Conclusions Our study identified two survival-sensitive subtypes of glioma and provided insights into the molecular mechanisms underlying glioma development; thus, potentially providing a new target for the prognostic prediction of gliomas and supporting personalized treatment strategies.
ISSN:1471-2105