PROSES INFERENSI PADA MODEL LOGIT

Let represent the response on a nominal random variable of Bernoulli distribution, with    ,  where is a parameter with unknown value. Problems of estimating used smallest square methods in  linier regression model  can overcome with used maximum likelihood method in  logistic regression.. Suppose...

Full description

Bibliographic Details
Main Author: Agus Rusgiyono
Format: Article
Language:English
Published: Universitas Diponegoro 2008-12-01
Series:Media Statistika
Online Access:https://ejournal.undip.ac.id/index.php/media_statistika/article/view/2608
_version_ 1818266319531802624
author Agus Rusgiyono
author_facet Agus Rusgiyono
author_sort Agus Rusgiyono
collection DOAJ
description Let represent the response on a nominal random variable of Bernoulli distribution, with    ,  where is a parameter with unknown value. Problems of estimating used smallest square methods in  linier regression model  can overcome with used maximum likelihood method in  logistic regression.. Suppose  is maksimum likelihood estimstors of . In case can be obtained  from first condition, ln(Ln(p)) to be maximum  at point then be obtained and that is unbiased estimator because To be test hipothesis that , with a large sample size used fact that    Keywords : Estimator, unbiased estimator, test statistic
first_indexed 2024-12-12T20:04:49Z
format Article
id doaj.art-49b56d07152a4e3395d8e43465125a59
institution Directory Open Access Journal
issn 1979-3693
2477-0647
language English
last_indexed 2024-12-12T20:04:49Z
publishDate 2008-12-01
publisher Universitas Diponegoro
record_format Article
series Media Statistika
spelling doaj.art-49b56d07152a4e3395d8e43465125a592022-12-22T00:13:40ZengUniversitas DiponegoroMedia Statistika1979-36932477-06472008-12-0112919810.14710/medstat.1.2.91-982268PROSES INFERENSI PADA MODEL LOGITAgus RusgiyonoLet represent the response on a nominal random variable of Bernoulli distribution, with    ,  where is a parameter with unknown value. Problems of estimating used smallest square methods in  linier regression model  can overcome with used maximum likelihood method in  logistic regression.. Suppose  is maksimum likelihood estimstors of . In case can be obtained  from first condition, ln(Ln(p)) to be maximum  at point then be obtained and that is unbiased estimator because To be test hipothesis that , with a large sample size used fact that    Keywords : Estimator, unbiased estimator, test statistichttps://ejournal.undip.ac.id/index.php/media_statistika/article/view/2608
spellingShingle Agus Rusgiyono
PROSES INFERENSI PADA MODEL LOGIT
Media Statistika
title PROSES INFERENSI PADA MODEL LOGIT
title_full PROSES INFERENSI PADA MODEL LOGIT
title_fullStr PROSES INFERENSI PADA MODEL LOGIT
title_full_unstemmed PROSES INFERENSI PADA MODEL LOGIT
title_short PROSES INFERENSI PADA MODEL LOGIT
title_sort proses inferensi pada model logit
url https://ejournal.undip.ac.id/index.php/media_statistika/article/view/2608
work_keys_str_mv AT agusrusgiyono prosesinferensipadamodellogit