tegdet: An extensible Python library for anomaly detection using time evolving graphs

This paper presents tegdet, a new Python library for anomaly detection in unsupervised approaches. The input of the library is a univariate time series, representing observations of a given phenomenon. Then, tegdet identifies anomalous epochs, i.e., time intervals where the observations differ in a...

Full description

Bibliographic Details
Main Authors: Simona Bernardi, Raúl Javierre, José Merseguer
Format: Article
Language:English
Published: Elsevier 2023-05-01
Series:SoftwareX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352711023000596
_version_ 1827940541431545856
author Simona Bernardi
Raúl Javierre
José Merseguer
author_facet Simona Bernardi
Raúl Javierre
José Merseguer
author_sort Simona Bernardi
collection DOAJ
description This paper presents tegdet, a new Python library for anomaly detection in unsupervised approaches. The input of the library is a univariate time series, representing observations of a given phenomenon. Then, tegdet identifies anomalous epochs, i.e., time intervals where the observations differ in a given percentile of a baseline distribution. Epochs are represented by time evolving graphs and the baseline distribution is given by the dissimilarities between a reference graph and the graphs of the epochs. Currently, the library implements 28 dissimilarity metrics, i.e., 28 different anomaly detection techniques, and its extensible design allows to easily introduce new ones. tegdet exposes a complete functionality to carry out the anomaly detection, through a straightforward designed API. Summarizing, to the best of our knowledge, tegdet is the first publicly available library, based on time evolving graphs, for anomaly detection in time series. Our experimentation shows promising results. For example, Clark and Divergence techniques can achieve an accuracy of 100%, while the time to build the model and predict lasts for few hundreds milliseconds.
first_indexed 2024-03-13T09:10:52Z
format Article
id doaj.art-49c452273417425b8605429bbcb47087
institution Directory Open Access Journal
issn 2352-7110
language English
last_indexed 2024-03-13T09:10:52Z
publishDate 2023-05-01
publisher Elsevier
record_format Article
series SoftwareX
spelling doaj.art-49c452273417425b8605429bbcb470872023-05-27T04:25:51ZengElsevierSoftwareX2352-71102023-05-0122101363tegdet: An extensible Python library for anomaly detection using time evolving graphsSimona Bernardi0Raúl Javierre1José Merseguer2Dept. de Informática e Ing. de Sistemas, Universidad de Zaragoza, Spain; Corresponding author.Hiberus, SpainDept. de Informática e Ing. de Sistemas, Universidad de Zaragoza, SpainThis paper presents tegdet, a new Python library for anomaly detection in unsupervised approaches. The input of the library is a univariate time series, representing observations of a given phenomenon. Then, tegdet identifies anomalous epochs, i.e., time intervals where the observations differ in a given percentile of a baseline distribution. Epochs are represented by time evolving graphs and the baseline distribution is given by the dissimilarities between a reference graph and the graphs of the epochs. Currently, the library implements 28 dissimilarity metrics, i.e., 28 different anomaly detection techniques, and its extensible design allows to easily introduce new ones. tegdet exposes a complete functionality to carry out the anomaly detection, through a straightforward designed API. Summarizing, to the best of our knowledge, tegdet is the first publicly available library, based on time evolving graphs, for anomaly detection in time series. Our experimentation shows promising results. For example, Clark and Divergence techniques can achieve an accuracy of 100%, while the time to build the model and predict lasts for few hundreds milliseconds.http://www.sciencedirect.com/science/article/pii/S2352711023000596Unsupervised anomaly detectionUnivariate time-seriesTime evolving graphsDissimilarity metrics
spellingShingle Simona Bernardi
Raúl Javierre
José Merseguer
tegdet: An extensible Python library for anomaly detection using time evolving graphs
SoftwareX
Unsupervised anomaly detection
Univariate time-series
Time evolving graphs
Dissimilarity metrics
title tegdet: An extensible Python library for anomaly detection using time evolving graphs
title_full tegdet: An extensible Python library for anomaly detection using time evolving graphs
title_fullStr tegdet: An extensible Python library for anomaly detection using time evolving graphs
title_full_unstemmed tegdet: An extensible Python library for anomaly detection using time evolving graphs
title_short tegdet: An extensible Python library for anomaly detection using time evolving graphs
title_sort tegdet an extensible python library for anomaly detection using time evolving graphs
topic Unsupervised anomaly detection
Univariate time-series
Time evolving graphs
Dissimilarity metrics
url http://www.sciencedirect.com/science/article/pii/S2352711023000596
work_keys_str_mv AT simonabernardi tegdetanextensiblepythonlibraryforanomalydetectionusingtimeevolvinggraphs
AT rauljavierre tegdetanextensiblepythonlibraryforanomalydetectionusingtimeevolvinggraphs
AT josemerseguer tegdetanextensiblepythonlibraryforanomalydetectionusingtimeevolvinggraphs