A n‐type, Stable Electrolyte Gated Organic Transistor Based on a Printed Polymer

Abstract Electrolyte‐gated organic transistors (EGOTs) are promising and versatile devices for next‐generation biosensors, neuromorphic systems, and low‐voltage electronics. They are particularly indicated for applications where stable operation in aqueous environment and cost‐effective manufacturin...

Full description

Bibliographic Details
Main Authors: Fabrizio Antonio Viola, Filippo Melloni, Alireza Molazemhosseini, Francesco Modena, Mauro Sassi, Luca Beverina, Mario Caironi
Format: Article
Language:English
Published: Wiley-VCH 2023-01-01
Series:Advanced Electronic Materials
Subjects:
Online Access:https://doi.org/10.1002/aelm.202200573
Description
Summary:Abstract Electrolyte‐gated organic transistors (EGOTs) are promising and versatile devices for next‐generation biosensors, neuromorphic systems, and low‐voltage electronics. They are particularly indicated for applications where stable operation in aqueous environment and cost‐effective manufacturing are required. Indeed, EGOTs can be fabricated through low‐cost, large area, and scalable techniques, such as printing, from a large portfolio of solution processable organic materials, which are often able to stably operate in water or physiological solutions. Despite a large number of solution processable EGOTs have been reported in the literature so far, only a few are based on printed semiconductors, with no examples of digitally printed, i.e., inkjet printed, n‐type devices, which would easily enable complementary architectures. In this work, we propose the first example of a n‐type electrolyte gated organic transistor based on an inkjet printed polymer. The proposed device shows a high stability when operated in water and requires only 3 hours of conditioning to produce a stable response, a much faster dynamic than in the case of printed polymers currently tested for p‐type EGOTs. As a proof‐of‐concept, the proposed printed n‐type EGOT is successfully integrated with a printed single‐walled carbon‐nanotubes based p‐type device in a logic inverter, demonstrating the possibility to build simple water‐gated digital electronic circuits.
ISSN:2199-160X