A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data

<p>Melt ponds are key elements in the energy balance of Arctic sea ice. Observing their temporal evolution is crucial for understanding melt processes and predicting sea ice evolution. Remote sensing is the only technique that enables large-scale observations of Arctic sea ice. However, monito...

Full description

Bibliographic Details
Main Authors: M. König, N. Oppelt
Format: Article
Language:English
Published: Copernicus Publications 2020-08-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/14/2567/2020/tc-14-2567-2020.pdf
_version_ 1819019531923750912
author M. König
N. Oppelt
author_facet M. König
N. Oppelt
author_sort M. König
collection DOAJ
description <p>Melt ponds are key elements in the energy balance of Arctic sea ice. Observing their temporal evolution is crucial for understanding melt processes and predicting sea ice evolution. Remote sensing is the only technique that enables large-scale observations of Arctic sea ice. However, monitoring melt pond deepening in this way is challenging because most of the optical signal reflected by a pond is defined by the scattering characteristics of the underlying ice. Without knowing the influence of meltwater on the reflected signal, the water depth cannot be determined. To solve the problem, we simulated the way meltwater changes the reflected spectra of bare ice. We developed a model based on the slope of the log-scaled remote sensing reflectance at 710&thinsp;<span class="inline-formula">nm</span> as a function of depth that is widely independent from the bottom albedo and accounts for the influence of varying solar zenith angles. We validated the model using 49 in situ melt pond spectra and corresponding depths from shallow ponds on dark and bright ice. Retrieved pond depths are accurate (root mean square error, <span class="inline-formula">RMSE=2.81</span>&thinsp;<span class="inline-formula">cm</span>; <span class="inline-formula"><i>n</i>RMSE=16</span>&thinsp;%) and highly correlated with in situ measurements (<span class="inline-formula"><i>r</i>=0.89</span>; <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>p</mi><mo>=</mo><mn mathvariant="normal">4.34</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">17</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="81pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e889bc451f3575818ff1fb9c7014edd0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-2567-2020-ie00001.svg" width="81pt" height="15pt" src="tc-14-2567-2020-ie00001.png"/></svg:svg></span></span>). The model further explains a large portion of the variation in pond depth (<span class="inline-formula"><i>R</i><sup>2</sup>=0.74</span>). Our results indicate that our model enables the accurate retrieval of pond depth on Arctic sea ice from optical data under clear sky conditions without having to consider pond bottom albedo. This technique is potentially transferrable to hyperspectral remote sensors on unmanned aerial vehicles, aircraft and satellites.</p>
first_indexed 2024-12-21T03:36:48Z
format Article
id doaj.art-49d417fc272b4f61b4268a6bba87e6a0
institution Directory Open Access Journal
issn 1994-0416
1994-0424
language English
last_indexed 2024-12-21T03:36:48Z
publishDate 2020-08-01
publisher Copernicus Publications
record_format Article
series The Cryosphere
spelling doaj.art-49d417fc272b4f61b4268a6bba87e6a02022-12-21T19:17:19ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242020-08-01142567257910.5194/tc-14-2567-2020A linear model to derive melt pond depth on Arctic sea ice from hyperspectral dataM. KönigN. Oppelt<p>Melt ponds are key elements in the energy balance of Arctic sea ice. Observing their temporal evolution is crucial for understanding melt processes and predicting sea ice evolution. Remote sensing is the only technique that enables large-scale observations of Arctic sea ice. However, monitoring melt pond deepening in this way is challenging because most of the optical signal reflected by a pond is defined by the scattering characteristics of the underlying ice. Without knowing the influence of meltwater on the reflected signal, the water depth cannot be determined. To solve the problem, we simulated the way meltwater changes the reflected spectra of bare ice. We developed a model based on the slope of the log-scaled remote sensing reflectance at 710&thinsp;<span class="inline-formula">nm</span> as a function of depth that is widely independent from the bottom albedo and accounts for the influence of varying solar zenith angles. We validated the model using 49 in situ melt pond spectra and corresponding depths from shallow ponds on dark and bright ice. Retrieved pond depths are accurate (root mean square error, <span class="inline-formula">RMSE=2.81</span>&thinsp;<span class="inline-formula">cm</span>; <span class="inline-formula"><i>n</i>RMSE=16</span>&thinsp;%) and highly correlated with in situ measurements (<span class="inline-formula"><i>r</i>=0.89</span>; <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>p</mi><mo>=</mo><mn mathvariant="normal">4.34</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">17</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="81pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e889bc451f3575818ff1fb9c7014edd0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-14-2567-2020-ie00001.svg" width="81pt" height="15pt" src="tc-14-2567-2020-ie00001.png"/></svg:svg></span></span>). The model further explains a large portion of the variation in pond depth (<span class="inline-formula"><i>R</i><sup>2</sup>=0.74</span>). Our results indicate that our model enables the accurate retrieval of pond depth on Arctic sea ice from optical data under clear sky conditions without having to consider pond bottom albedo. This technique is potentially transferrable to hyperspectral remote sensors on unmanned aerial vehicles, aircraft and satellites.</p>https://tc.copernicus.org/articles/14/2567/2020/tc-14-2567-2020.pdf
spellingShingle M. König
N. Oppelt
A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data
The Cryosphere
title A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data
title_full A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data
title_fullStr A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data
title_full_unstemmed A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data
title_short A linear model to derive melt pond depth on Arctic sea ice from hyperspectral data
title_sort linear model to derive melt pond depth on arctic sea ice from hyperspectral data
url https://tc.copernicus.org/articles/14/2567/2020/tc-14-2567-2020.pdf
work_keys_str_mv AT mkonig alinearmodeltoderivemeltponddepthonarcticseaicefromhyperspectraldata
AT noppelt alinearmodeltoderivemeltponddepthonarcticseaicefromhyperspectraldata
AT mkonig linearmodeltoderivemeltponddepthonarcticseaicefromhyperspectraldata
AT noppelt linearmodeltoderivemeltponddepthonarcticseaicefromhyperspectraldata