The correction of Inelastic Neutron Scattering data of organic samples using the Average Functional Group Approximation

The use of the Average Functional Group Approximation for self-shielding corrections at inelastic neutron spectrometers is discussed. By taking triptindane as a case study, we use the above-mentioned approximation to simulate a synthetic dynamic structure factor as measured on an indirect-geometry s...

Full description

Bibliographic Details
Main Authors: Preziosi Enrico, Andreani Carla, Romanelli Giovanni, Senesi Roberto
Format: Article
Language:English
Published: EDP Sciences 2022-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2022/16/epjconf_qens-wins2022_02005.pdf
Description
Summary:The use of the Average Functional Group Approximation for self-shielding corrections at inelastic neutron spectrometers is discussed. By taking triptindane as a case study, we use the above-mentioned approximation to simulate a synthetic dynamic structure factor as measured on an indirect-geometry spectrometer, as well as the related total scattering cross section as a function of incident neutron energy and sample temperature, and the transmission spectra depending on the sample thickness. These quantities, obtained in a consistent way from the Average Functional Group Approximation, are used to calculate the energy-dependent self-shielding correction affecting the sample under investigation. The impact on the intensities of low-energy vibrational modes is discussed, showing that at typical experimental conditions the sample-dependent attenuation factor is about 15% higher compared to the correction at higher energies.
ISSN:2100-014X