Radiation damage to Ni-based alloys in Wolsong CANDU reactor environments

Radiation damage due to neutrons has been calculated in Ni-based alloys in Wolsong CANDU reactor environments. Two damage parameters are considered: displacement damage, and transmutation gas production. We used the SPECTER and SRIM computer codes in quantifying radiation damage. In addition, damage...

Full description

Bibliographic Details
Main Authors: Junhyun Kwon, Hyung-Ha Jin, Gyeong-Geun Lee, Dong-Hwan Park
Format: Article
Language:English
Published: Elsevier 2019-06-01
Series:Nuclear Engineering and Technology
Online Access:http://www.sciencedirect.com/science/article/pii/S1738573318307289
Description
Summary:Radiation damage due to neutrons has been calculated in Ni-based alloys in Wolsong CANDU reactor environments. Two damage parameters are considered: displacement damage, and transmutation gas production. We used the SPECTER and SRIM computer codes in quantifying radiation damage. In addition, damage caused by Ni two-step reactions was considered. Estimations were made for the annulus spacers in a CANDU reactor that are located axially along a fuel channel and made of Inconel X-750. The calculation results indicate that the transmutation gas production from the Ni two-step reactions is predominant as the effective full power year increases. The displacement damage due to recoil atoms produced from Ni two-step reactions accounts for over 30% out of the total displacement damage. Keywords: Radiation damage, Displacement, Ni two-step reaction, X-750, Annulus spacer
ISSN:1738-5733