Simulation on The Mathematical Model for the Control Of Hepatitis B Virus-Hepatitis D Virus (HBV-HDV) Co-infection Transmission Dynamics in a Given Population

This paper investigates the impact of the various parameters of the mathematical model for Hepatitis B virus-Hepatitis D virus (HBV-HDV) co-infection with controls (awareness, vaccine and therapy). It establishes that the model is biologically meaningful and epidemiologically well posed. Furthermore...

Full description

Bibliographic Details
Main Authors: Remigius Okeke Aja, Titus Chinebu, Godwin Mbah
Format: Article
Language:English
Published: Mahmut Akyigit 2021-08-01
Series:Journal of Mathematical Sciences and Modelling
Subjects:
Online Access:https://dergipark.org.tr/tr/download/article-file/1791207
Description
Summary:This paper investigates the impact of the various parameters of the mathematical model for Hepatitis B virus-Hepatitis D virus (HBV-HDV) co-infection with controls (awareness, vaccine and therapy). It establishes that the model is biologically meaningful and epidemiologically well posed. Furthermore, simulations are carried out on the equations of the model using MATLAB and the results indicate that; when $c_1$(awareness) increase from $0.08$ to $0.70$, then the number of exposed HB individuals in the population will also increase. Conversely, we notice a drastic decrease in the number of exposed HBD individuals in the population when $c_1$(awareness) increase from $0.08$ to $0.70$. Again, we observe a decrease in the number of exposed treated individuals in the population when $c$(therapy) increase from $0.08$ to $0.50$. Similarly, we notice an increase in the number of recovered HBD individuals in the population upon the increase of $c$(therapy) from $0.08$ to $0.50$. We therefore conclude that awareness, vaccine and therapy are good measure which can be used to effectively control HBV-HDV co-infection in a population. However, awareness and vaccine are better control strategies than therapy. Hence, these simulation results provide the best framework for the control of the disease; Hepatitis B virus-Hepatitis D virus (HBV-HDV) co-infection in a population.
ISSN:2636-8692