Very Short-Term Solar Power Forecasting Using a Frequency Incorporated Deep Learning Model

This paper aims to forecast solar power in very short horizons to assist in real-time distribution system operations. Popular machine learning methods for time series forecasting are studied, including recurrent neural networks with Long Short-Term Memory (LSTM). Although LSTM networks perform well...

Szczegółowa specyfikacja

Opis bibliograficzny
Główni autorzy: Hossein Panamtash, Shahrzad Mahdavi, Qun Zhou Sun, Guo-Jun Qi, Hongrui Liu, Aleksandar Dimitrovski
Format: Artykuł
Język:English
Wydane: IEEE 2023-01-01
Seria:IEEE Open Access Journal of Power and Energy
Hasła przedmiotowe:
Dostęp online:https://ieeexplore.ieee.org/document/10179133/