On the deformed Besov-Hankel spaces

In this paper we introduce function spaces denoted by \(BH_{\kappa,\beta}^{p,r}\) (\(0\lt\beta\lt 1\), \(1\leq p, r \leq +\infty\)) as subspaces of \(L^p\) that we call deformed Besov-Hankel spaces. We provide characterizations of these spaces in terms of Bochner-Riesz means in the case \(1\leq p\le...

Full description

Bibliographic Details
Main Authors: Salem Ben Saïd, Mohamed Amine Boubatra, Mohamed Sifi
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2020-03-01
Series:Opuscula Mathematica
Subjects:
Online Access:https://www.opuscula.agh.edu.pl/vol40/2/art/opuscula_math_4010.pdf
_version_ 1818616141899104256
author Salem Ben Saïd
Mohamed Amine Boubatra
Mohamed Sifi
author_facet Salem Ben Saïd
Mohamed Amine Boubatra
Mohamed Sifi
author_sort Salem Ben Saïd
collection DOAJ
description In this paper we introduce function spaces denoted by \(BH_{\kappa,\beta}^{p,r}\) (\(0\lt\beta\lt 1\), \(1\leq p, r \leq +\infty\)) as subspaces of \(L^p\) that we call deformed Besov-Hankel spaces. We provide characterizations of these spaces in terms of Bochner-Riesz means in the case \(1\leq p\leq +\infty\) and in terms of partial Hankel integrals in the case \(1\lt p\lt +\infty\) associated to the deformed Hankel operator by a parameter \(\kappa\gt 0\). For \(p=r=+\infty\), we obtain an approximation result involving partial Hankel integrals.
first_indexed 2024-12-16T16:45:05Z
format Article
id doaj.art-49f42c9cda974c998286777f5f6cd799
institution Directory Open Access Journal
issn 1232-9274
language English
last_indexed 2024-12-16T16:45:05Z
publishDate 2020-03-01
publisher AGH Univeristy of Science and Technology Press
record_format Article
series Opuscula Mathematica
spelling doaj.art-49f42c9cda974c998286777f5f6cd7992022-12-21T22:24:12ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742020-03-01402171207https://doi.org/10.7494/OpMath.2020.40.2.1714010On the deformed Besov-Hankel spacesSalem Ben Saïd0https://orcid.org/0000-0001-7577-5167Mohamed Amine Boubatra1https://orcid.org/0000-0002-3595-7246Mohamed Sifi2https://orcid.org/0000-0003-0607-8303Department of Mathematical Science, College of Science, United Arab Emirates University, Al-Ain, Abu Dhabi, UAEUniversité Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire d'Analyse Mathématique et Applications, LR11ES11, Campus Universitaire, 2092 El Manar I, Tunis, TunisiaUniversité Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire d'Analyse Mathématique et Applications, LR11ES11, Campus Universitaire, 2092 El Manar I, Tunis, TunisiaIn this paper we introduce function spaces denoted by \(BH_{\kappa,\beta}^{p,r}\) (\(0\lt\beta\lt 1\), \(1\leq p, r \leq +\infty\)) as subspaces of \(L^p\) that we call deformed Besov-Hankel spaces. We provide characterizations of these spaces in terms of Bochner-Riesz means in the case \(1\leq p\leq +\infty\) and in terms of partial Hankel integrals in the case \(1\lt p\lt +\infty\) associated to the deformed Hankel operator by a parameter \(\kappa\gt 0\). For \(p=r=+\infty\), we obtain an approximation result involving partial Hankel integrals.https://www.opuscula.agh.edu.pl/vol40/2/art/opuscula_math_4010.pdfdeformed hankel kernelbesov spacesbochner-riesz meanspartial hankel integrals
spellingShingle Salem Ben Saïd
Mohamed Amine Boubatra
Mohamed Sifi
On the deformed Besov-Hankel spaces
Opuscula Mathematica
deformed hankel kernel
besov spaces
bochner-riesz means
partial hankel integrals
title On the deformed Besov-Hankel spaces
title_full On the deformed Besov-Hankel spaces
title_fullStr On the deformed Besov-Hankel spaces
title_full_unstemmed On the deformed Besov-Hankel spaces
title_short On the deformed Besov-Hankel spaces
title_sort on the deformed besov hankel spaces
topic deformed hankel kernel
besov spaces
bochner-riesz means
partial hankel integrals
url https://www.opuscula.agh.edu.pl/vol40/2/art/opuscula_math_4010.pdf
work_keys_str_mv AT salembensaid onthedeformedbesovhankelspaces
AT mohamedamineboubatra onthedeformedbesovhankelspaces
AT mohamedsifi onthedeformedbesovhankelspaces