Development and evaluation of candidate subunit vaccine against botulinum neurotoxin serotype B

Botulinum neurotoxins (BoNTs) are potential biological weapons because of their high toxicity and mortality. Vaccination is an effective strategy to prevent botulism. The carboxyl-terminus of the heavy chain (Hc domain) is nontoxic and sufficient to generate protective immune responses against natur...

Full description

Bibliographic Details
Main Authors: Dan-Yang Shi, Bo-Yang Chen, Yun-Yun Mao, Guo Zhou, Jian-Sheng Lu, Yun-Zhou Yu, Xiao-Wei Zhou, Zhi-Wei Sun
Format: Article
Language:English
Published: Taylor & Francis Group 2019-03-01
Series:Human Vaccines & Immunotherapeutics
Subjects:
Online Access:http://dx.doi.org/10.1080/21645515.2018.1547613
Description
Summary:Botulinum neurotoxins (BoNTs) are potential biological weapons because of their high toxicity and mortality. Vaccination is an effective strategy to prevent botulism. The carboxyl-terminus of the heavy chain (Hc domain) is nontoxic and sufficient to generate protective immune responses against natural BoNTs in animals. To produce a vaccine suitable for human use, a recombinant non His-tagged isoform of the Hc domain of botulinum neurotoxin serotype B (BHc) was expressed in Escherichia coli and purified by sequential chromatography. The immunogenicity of recombinant E.coli-expressed BHc and the yeast-expressed mBHc antigens was explored and compared in Balb/c mice. BHc provided comparable protective potency but elicited significantly higher antibody titer and neutralization potency against BoNT/B after twice immunization, indicating that the recombinant BHc protein expressed in E.coli have better immunogenicity than the yeast-expressed mBHc. Moreover, a frequency and dose-dependent effect was observed in mice immunized with BHc subunit vaccine and the anti-BHc ELISA antibody titers correlated well with neutralizing antibody titers and protection potency. In summary, the Alhydrogel-formulated BHc subunit vaccine afforded effective protection against BoNT/B challenge. Therefore, the non-His-tagged and homogeneous BHc expressed in E.coli represents a good potential candidate subunit vaccine for human use.
ISSN:2164-5515
2164-554X