Hybrid Learning Models for IMU-Based HAR with Feature Analysis and Data Correction

This paper proposes a novel approach to tackle the human activity recognition (HAR) problem. Four classes of body movement datasets, namely stand-up, sit-down, run, and walk, are applied to perform HAR. Instead of using vision-based solutions, we address the HAR challenge by implementing a real-time...

Full description

Bibliographic Details
Main Authors: Yu-Hsuan Tseng, Chih-Yu Wen
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/18/7802
Description
Summary:This paper proposes a novel approach to tackle the human activity recognition (HAR) problem. Four classes of body movement datasets, namely stand-up, sit-down, run, and walk, are applied to perform HAR. Instead of using vision-based solutions, we address the HAR challenge by implementing a real-time HAR system architecture with a wearable inertial measurement unit (IMU) sensor, which aims to achieve networked sensing and data sampling of human activity, data pre-processing and feature analysis, data generation and correction, and activity classification using hybrid learning models. Referring to the experimental results, the proposed system selects the pre-trained eXtreme Gradient Boosting (XGBoost) model and the Convolutional Variational Autoencoder (CVAE) model as the classifier and generator, respectively, with 96.03% classification accuracy.
ISSN:1424-8220