Towards a Better Understanding of the Back-Side Illumination Mode on Photocatalytic Metal–Organic Chemical Vapour Deposition Coatings Used for Treating Wastewater Polluted by Pesticides

Pesticides are emerging contaminants that pose various risks to human health and aquatic ecosystems. In this work, diuron was considered as a contaminant model to investigate the influence of the back-side illumination mode (BSI) on the photocatalytic activity of TiO<sub>2</sub> coatings...

Full description

Bibliographic Details
Main Authors: Cristian Yoel Quintero-Castañeda, Claire Tendero, Thibaut Triquet, Paola Andrea Acevedo, Laure Latapie, María Margarita Sierra-Carrillo, Caroline Andriantsiferana
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/16/1/1
Description
Summary:Pesticides are emerging contaminants that pose various risks to human health and aquatic ecosystems. In this work, diuron was considered as a contaminant model to investigate the influence of the back-side illumination mode (BSI) on the photocatalytic activity of TiO<sub>2</sub> coatings grown on Pyrex plates by metal–organic chemical vapour deposition (MOCVD). A photoreactor working in recirculation mode was irradiated at 365 nm with ultraviolet A (UVA) light-emitting diodes in BSI. The degradation of diuron and its transformation products was analysed by high-performance liquid chromatography, ion chromatography, and total organic carbon analysis. The coatings were characterised by X-ray diffraction analysis and scanning electron microscopy. Five coatings containing 3, 7, 10, 12 and 27 mg of TiO<sub>2</sub> exhibited different morphology, crystallinity, thickness and photocatalytic activities. The morphology and crystallinity of the coatings had no significant influence on their photocatalytic activity, unlike their mass and thickness. TiO<sub>2</sub> contents less than 10 mg limit the photocatalytic activity, whereas those greater than 15 mg are inefficient in the BSI because of their thickness. The maximum efficiency was achieved for coatings of thickness 1.8 and 2 µm with TiO<sub>2</sub> contents of 10 and 12 mg, revealing that the photocatalyst thickness controls the photocatalytic efficiency in the BSI.
ISSN:2073-4441