Mapping Area Changes of Glacial Lakes Using Stacks of Optical Satellite Images

Glacial lakes are an important and dynamic component of terrestrial meltwater storage, responding to climate change and glacier retreat. Although there is evidence of rapid worldwide growth of glacial lakes, changes in frequency and magnitude of glacier lake outbursts under climatic changes are not...

Full description

Bibliographic Details
Main Authors: Varvara Bazilova, Andreas Kääb
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/23/5973
Description
Summary:Glacial lakes are an important and dynamic component of terrestrial meltwater storage, responding to climate change and glacier retreat. Although there is evidence of rapid worldwide growth of glacial lakes, changes in frequency and magnitude of glacier lake outbursts under climatic changes are not yet understood. This study proposes and discusses a method framework for regional-scale mapping of glacial lakes and area change detection using large time-series of optical satellite images and the cloud processing tool Google Earth Engine in a semi-automatic way. The methods are presented for two temporal scales, from the 2-week Landsat revisit period to annual resolution. The proposed methods show how constructing an annual composite of pixel values such as minimum or maximum values can help to overcome typical problems associated with water mapping from optical satellite data such as clouds, or terrain and cloud shadows. For annual-resolution glacial lake mapping, our method set only involves two different band ratios based on multispectral satellite images. The study demonstrates how the proposed method framework can be applied to detect rapid lake area changes and to produce a complete regional-scale glacial lake inventory, using the Greater Caucasus as example.
ISSN:2072-4292