Asymptotic Integration of Certain Differential Equations in Banach Space

We investigate the problem of constructing the asymptotics for weak solutions of certain class of linear differential equations in the Banach space as the independent variable tends to infinity. The studied class of equations is the perturbation of linear autonomous equation, generally speaking, wit...

Full description

Bibliographic Details
Main Author: Pavel N. Nesterov
Format: Article
Language:English
Published: Yaroslavl State University 2017-10-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/583
_version_ 1797878007851909120
author Pavel N. Nesterov
author_facet Pavel N. Nesterov
author_sort Pavel N. Nesterov
collection DOAJ
description We investigate the problem of constructing the asymptotics for weak solutions of certain class of linear differential equations in the Banach space as the independent variable tends to infinity. The studied class of equations is the perturbation of linear autonomous equation, generally speaking, with an unbounded operator. The perturbation takes the form of the family of the bounded operators that, in a sense, decreases oscillatory at infinity. The unperturbed equation satisfies the standard requirements of the center manifold theory. The essence of the proposed asymptotic integration method is to prove the existence for the initial equation of the center-like manifold (critical manifold). This manifold is positively invariant with respect to the initial equation and attracts all the trajectories of the weak solutions. The dynamics of the initial equation on the critical manifold is described by the finite-dimensional ordinary differential system. The asymptotics for the fundamental matrix of this system may be constructed by using the method proposed by the author for asymptotic integration of the systems with oscillatory decreasing coefficients. We illustrate the suggested technique by constructing the asymptotic formulas for solutions of the perturbed heat equation.
first_indexed 2024-04-10T02:25:58Z
format Article
id doaj.art-4a1678b347e249c98cb01d500575429f
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2024-04-10T02:25:58Z
publishDate 2017-10-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-4a1678b347e249c98cb01d500575429f2023-03-13T08:07:29ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172017-10-0124559661410.18255/1818-1015-2017-5-596-614425Asymptotic Integration of Certain Differential Equations in Banach SpacePavel N. Nesterov0Ярославский государственный университет им. П.Г. ДемидоваWe investigate the problem of constructing the asymptotics for weak solutions of certain class of linear differential equations in the Banach space as the independent variable tends to infinity. The studied class of equations is the perturbation of linear autonomous equation, generally speaking, with an unbounded operator. The perturbation takes the form of the family of the bounded operators that, in a sense, decreases oscillatory at infinity. The unperturbed equation satisfies the standard requirements of the center manifold theory. The essence of the proposed asymptotic integration method is to prove the existence for the initial equation of the center-like manifold (critical manifold). This manifold is positively invariant with respect to the initial equation and attracts all the trajectories of the weak solutions. The dynamics of the initial equation on the critical manifold is described by the finite-dimensional ordinary differential system. The asymptotics for the fundamental matrix of this system may be constructed by using the method proposed by the author for asymptotic integration of the systems with oscillatory decreasing coefficients. We illustrate the suggested technique by constructing the asymptotic formulas for solutions of the perturbed heat equation.https://www.mais-journal.ru/jour/article/view/583асимптотикадифференциальное уравнениебанахово пространствоколебательно убывающие коэффициентыметод центральных многообразийвозмущенное уравнение теплопроводности
spellingShingle Pavel N. Nesterov
Asymptotic Integration of Certain Differential Equations in Banach Space
Моделирование и анализ информационных систем
асимптотика
дифференциальное уравнение
банахово пространство
колебательно убывающие коэффициенты
метод центральных многообразий
возмущенное уравнение теплопроводности
title Asymptotic Integration of Certain Differential Equations in Banach Space
title_full Asymptotic Integration of Certain Differential Equations in Banach Space
title_fullStr Asymptotic Integration of Certain Differential Equations in Banach Space
title_full_unstemmed Asymptotic Integration of Certain Differential Equations in Banach Space
title_short Asymptotic Integration of Certain Differential Equations in Banach Space
title_sort asymptotic integration of certain differential equations in banach space
topic асимптотика
дифференциальное уравнение
банахово пространство
колебательно убывающие коэффициенты
метод центральных многообразий
возмущенное уравнение теплопроводности
url https://www.mais-journal.ru/jour/article/view/583
work_keys_str_mv AT pavelnnesterov asymptoticintegrationofcertaindifferentialequationsinbanachspace