Pharmaceutical significance of Leuconostoc mesenteroides KS-TN11 isolated from Nile Tilapia, Oreochromis niloticus

Aquatic animals are known for their myriad of beneficial bacteria with diverse biologically active compounds. The current study was aimed to isolate and characterize potentially beneficial lactic acid bacteria from Nile Tilapia and evaluate their pharmaceutical applications. The fish samples were di...

Full description

Bibliographic Details
Main Authors: Bilal Ahmad Paray, Irfan A. Rather, Mohammad K. Al-Sadoon, Al-Shammari Fanar Hamad
Format: Article
Language:English
Published: Elsevier 2018-05-01
Series:Saudi Pharmaceutical Journal
Online Access:http://www.sciencedirect.com/science/article/pii/S1319016418300318
Description
Summary:Aquatic animals are known for their myriad of beneficial bacteria with diverse biologically active compounds. The current study was aimed to isolate and characterize potentially beneficial lactic acid bacteria from Nile Tilapia and evaluate their pharmaceutical applications. The fish samples were dissected and stomach, intestine, and gills were collected and serially diluted for the isolation of lactic acid bacteria (LAB) on BCP agar media. Identification of isolate was carried by biochemical and molecular characterization using API kit and 16S rRNA gene sequencing analysis, respectively. Further, KS-TN11 was assessed for α-glucosidase inhibitory potential using the chromogenic method. A lactic acid bacterium KS-TN11 was isolated from the stomach of Nile Tilapia and identified as Leuconostoc mesenteroides. Effect of KS-TN11 on lipid accumulation in adipocytes was done by using Oil Red O staining. The isolate showed strong antibacterial activity against a number of pathogenic bacteria in vitro. In addition, L. mesenteroides KS-TN11 KS-TN11 (50 mg/ml and 100 mg/ml) tends to inhibit adipogenesis in 3T3-L1 adipocytes and thus may have possible anti-obesity effects. Moreover, L. mesenteroides KS-TN11 exhibited substantial α–glucosidase inhibitory activities by 41.33% at 50 mg/ml and 64% at 100 mg/ml, respectively. The bacterium showed potent antibacterial activity against a number of pathogenic bacteria; in addition to alpha-glucosidase activity, and inhibition of lipid accumulation in 3T3-L1 cell line. These results reinforce KS-TN11 as a novel bacterium with an impending pharmaceutical application. Keywords: Lactic acid bacteria, Antimicrobial, Fish microflora, Anti-diabetic
ISSN:1319-0164