Dynamical Process of a Bit-Width Reduced Ising Model With Simulated Annealing

Ising machines have attracted attention as efficient solvers for combinatorial optimization problems, which are formulated as ground-state (lowest-energy) search problems of the Ising model. Due to the limited bit-width of coefficients on Ising machines, the Ising model must be transformed into a bi...

Full description

Bibliographic Details
Main Authors: Shuta Kikuchi, Nozomu Togawa, Shu Tanaka
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10235958/
Description
Summary:Ising machines have attracted attention as efficient solvers for combinatorial optimization problems, which are formulated as ground-state (lowest-energy) search problems of the Ising model. Due to the limited bit-width of coefficients on Ising machines, the Ising model must be transformed into a bit-width reduced (BWR) Ising model. According to previous research, the bit-width reduction method, which adds auxiliary spins, ensures that the ground state of the BWR Ising model is theoretically the same as the Ising model before bit-width reduction (original Ising model). However, while the dynamical process is closely related to solution accuracy, how the BWR Ising model progresses towards the ground state remains to be elucidated. Therefore, we compared the dynamical processes of these models using simulated annealing (SA). Our findings reveal significant differences in the dynamical process across models. Analysis from the viewpoint of statistical mechanics found that the BWR Ising model has two characteristic properties: an effective temperature and a slow relaxation. These properties alter the temperature schedule and spin flip probability in the BWR Ising model, leading to differences in the dynamical process. Therefore, to obtain the same dynamical process as the original Ising model, we proposed SA parameters for the BWR Ising model. We demonstrated the proposed SA parameters using a square lattice Ising model, in which all coefficients were set uniformly to the same positive values or randomly. Our experimental evaluations demonstrated that the dynamical process of the BWR and original Ising model became closer.
ISSN:2169-3536