Cycle Existence for All Edges in Folded Hypercubes under Scope Faults

The reliability of large-scale networks can be compromised by various factors such as natural disasters, human-induced incidents such as hacker attacks, bomb attacks, or even meteorite impacts, which can lead to failures in scope of processors or links. Therefore, ensuring fault tolerance in the int...

Full description

Bibliographic Details
Main Authors: Che-Nan Kuo, Yu-Huei Cheng
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/15/3391
_version_ 1797586370305196032
author Che-Nan Kuo
Yu-Huei Cheng
author_facet Che-Nan Kuo
Yu-Huei Cheng
author_sort Che-Nan Kuo
collection DOAJ
description The reliability of large-scale networks can be compromised by various factors such as natural disasters, human-induced incidents such as hacker attacks, bomb attacks, or even meteorite impacts, which can lead to failures in scope of processors or links. Therefore, ensuring fault tolerance in the interconnection network is vital to maintaining system reliability. The <i>n</i>-dimensional folded hypercube network structure, denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>, is constructed by adding an edge between every pair of vertices with complementary addresses from an <i>n</i>-dimensional hypercube, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>. Notably, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> exhibits distinct characteristics based on the dimensionality: it is bipartite for odd integers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></semantics></math></inline-formula> and non-bipartite for even integers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>. Recently, in terms of the issue of how <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> performs in communication under regional or widespread destruction, we mentioned that in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>, even when a pair of adjacent vertices encounter errors, any fault-free edge can still be embedded in cycles of various lengths. Additionally, even when the smallest communication ring experiences errors, it is still possible to embed cycles of any length. The smallest communication ring in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> is observed to be the four-cycle ring. In order to further investigate the communication capabilities of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>, we further discuss whether every fault-free edge will still be a part of every communication ring with different lengths when the smallest communication ring is compromised in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>. In this study, we consider a fault-free edge <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mo>=</mo><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mtext> </mtext><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mtext> </mtext><msub><mrow><mi>f</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>}</mo></mrow></semantics></math></inline-formula> as the set of faulty extreme vertices for any four cycles in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>. Our research focuses on investigating the cycle-embedding properties in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula>, where the fault-free edges play a significant role. The following properties are demonstrated: (1) For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula>, every even length cycle with a length ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo> </mo><mi mathvariant="normal">t</mi><mi mathvariant="normal">o</mi><mo> </mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>4</mn></mrow></semantics></math></inline-formula> contains a fault-free edge <i>e</i>; (2) For every even <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula>, every odd length cycle with a length ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn><mtext> </mtext><mi mathvariant="normal">t</mi><mi mathvariant="normal">o</mi><mtext> </mtext><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>5</mn></mrow></semantics></math></inline-formula> contains a fault-free edge <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi></mrow></semantics></math></inline-formula>. These findings provide insights into the cycle-embedding capabilities of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>, specifically in the context of fault tolerance when considering certain sets of faulty vertices.
first_indexed 2024-03-11T00:22:19Z
format Article
id doaj.art-4a38a14d21bb4e9fbfa5434c16348ee0
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T00:22:19Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-4a38a14d21bb4e9fbfa5434c16348ee02023-11-18T23:16:03ZengMDPI AGMathematics2227-73902023-08-011115339110.3390/math11153391Cycle Existence for All Edges in Folded Hypercubes under Scope FaultsChe-Nan Kuo0Yu-Huei Cheng1Department of Artificial Intelligence, CTBC Financial Management College, Tainan 709, TaiwanDepartment of Information and Communication Engineering, Chaoyang University of Technology, Taichung 413, TaiwanThe reliability of large-scale networks can be compromised by various factors such as natural disasters, human-induced incidents such as hacker attacks, bomb attacks, or even meteorite impacts, which can lead to failures in scope of processors or links. Therefore, ensuring fault tolerance in the interconnection network is vital to maintaining system reliability. The <i>n</i>-dimensional folded hypercube network structure, denoted as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>, is constructed by adding an edge between every pair of vertices with complementary addresses from an <i>n</i>-dimensional hypercube, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>. Notably, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> exhibits distinct characteristics based on the dimensionality: it is bipartite for odd integers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></semantics></math></inline-formula> and non-bipartite for even integers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>. Recently, in terms of the issue of how <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> performs in communication under regional or widespread destruction, we mentioned that in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>, even when a pair of adjacent vertices encounter errors, any fault-free edge can still be embedded in cycles of various lengths. Additionally, even when the smallest communication ring experiences errors, it is still possible to embed cycles of any length. The smallest communication ring in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula> is observed to be the four-cycle ring. In order to further investigate the communication capabilities of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>, we further discuss whether every fault-free edge will still be a part of every communication ring with different lengths when the smallest communication ring is compromised in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>. In this study, we consider a fault-free edge <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi><mo>=</mo><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>=</mo><mo>{</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mtext> </mtext><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mtext> </mtext><msub><mrow><mi>f</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>}</mo></mrow></semantics></math></inline-formula> as the set of faulty extreme vertices for any four cycles in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>. Our research focuses on investigating the cycle-embedding properties in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula>, where the fault-free edges play a significant role. The following properties are demonstrated: (1) For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula>, every even length cycle with a length ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo> </mo><mi mathvariant="normal">t</mi><mi mathvariant="normal">o</mi><mo> </mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>4</mn></mrow></semantics></math></inline-formula> contains a fault-free edge <i>e</i>; (2) For every even <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></semantics></math></inline-formula>, every odd length cycle with a length ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn><mtext> </mtext><mi mathvariant="normal">t</mi><mi mathvariant="normal">o</mi><mtext> </mtext><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>5</mn></mrow></semantics></math></inline-formula> contains a fault-free edge <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>e</mi></mrow></semantics></math></inline-formula>. These findings provide insights into the cycle-embedding capabilities of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi>F</mi><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></semantics></math></inline-formula>, specifically in the context of fault tolerance when considering certain sets of faulty vertices.https://www.mdpi.com/2227-7390/11/15/3391graph theoryinterconnection networksreliabilityscope faultsfolded hypercubes
spellingShingle Che-Nan Kuo
Yu-Huei Cheng
Cycle Existence for All Edges in Folded Hypercubes under Scope Faults
Mathematics
graph theory
interconnection networks
reliability
scope faults
folded hypercubes
title Cycle Existence for All Edges in Folded Hypercubes under Scope Faults
title_full Cycle Existence for All Edges in Folded Hypercubes under Scope Faults
title_fullStr Cycle Existence for All Edges in Folded Hypercubes under Scope Faults
title_full_unstemmed Cycle Existence for All Edges in Folded Hypercubes under Scope Faults
title_short Cycle Existence for All Edges in Folded Hypercubes under Scope Faults
title_sort cycle existence for all edges in folded hypercubes under scope faults
topic graph theory
interconnection networks
reliability
scope faults
folded hypercubes
url https://www.mdpi.com/2227-7390/11/15/3391
work_keys_str_mv AT chenankuo cycleexistenceforalledgesinfoldedhypercubesunderscopefaults
AT yuhueicheng cycleexistenceforalledgesinfoldedhypercubesunderscopefaults