A Dual-Encoder-Condensed Convolution Method for High-Precision Indoor Positioning

We study the problem of indoor positioning, which is a fundamental service in managing and analyzing objects in indoor environments. Unpredictable signal interference sources increase the degeneration of the accuracy and robustness of existing solutions. Deep learning approaches have recently been w...

Full description

Bibliographic Details
Main Authors: Xiangxu Meng, Wei Li, Sisi Zlatanova, Zheng Zhao, Xiao Wang
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/19/4746
Description
Summary:We study the problem of indoor positioning, which is a fundamental service in managing and analyzing objects in indoor environments. Unpredictable signal interference sources increase the degeneration of the accuracy and robustness of existing solutions. Deep learning approaches have recently been widely studied to overcome these challenges and attain better performance. In this paper, we aim to develop efficient algorithms, such as the dual-encoder-condensed convolution (DECC) method, which can achieve high-precision positioning for indoor services. In particular, firstly, we develop a convolutional module to add the original channel state information to the location information. Secondly, to explore channel differences between different antennas, we adopt a dual-encoder stacking mechanism for parallel calculation. Thirdly, we develop two different convolution kernels to speed up convergence. Performance studies on the indoor scenario and the urban canyon scenario datasets demonstrate the efficiency and effectiveness of our new approach.
ISSN:2072-4292